Polytope of Type {2,28,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,28,8,2}*1792b
if this polytope has a name.
Group : SmallGroup(1792,1036171)
Rank : 5
Schlafli Type : {2,28,8,2}
Number of vertices, edges, etc : 2, 28, 112, 8, 2
Order of s0s1s2s3s4 : 56
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,28,4,2}*896
   4-fold quotients : {2,28,2,2}*448, {2,14,4,2}*448
   7-fold quotients : {2,4,8,2}*256b
   8-fold quotients : {2,14,2,2}*224
   14-fold quotients : {2,4,4,2}*128
   16-fold quotients : {2,7,2,2}*112
   28-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   56-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  9)(  5,  8)(  6,  7)( 11, 16)( 12, 15)( 13, 14)( 17, 24)( 18, 30)
( 19, 29)( 20, 28)( 21, 27)( 22, 26)( 23, 25)( 32, 37)( 33, 36)( 34, 35)
( 39, 44)( 40, 43)( 41, 42)( 45, 52)( 46, 58)( 47, 57)( 48, 56)( 49, 55)
( 50, 54)( 51, 53)( 59, 87)( 60, 93)( 61, 92)( 62, 91)( 63, 90)( 64, 89)
( 65, 88)( 66, 94)( 67,100)( 68, 99)( 69, 98)( 70, 97)( 71, 96)( 72, 95)
( 73,108)( 74,114)( 75,113)( 76,112)( 77,111)( 78,110)( 79,109)( 80,101)
( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102);;
s2 := (  3, 60)(  4, 59)(  5, 65)(  6, 64)(  7, 63)(  8, 62)(  9, 61)( 10, 67)
( 11, 66)( 12, 72)( 13, 71)( 14, 70)( 15, 69)( 16, 68)( 17, 81)( 18, 80)
( 19, 86)( 20, 85)( 21, 84)( 22, 83)( 23, 82)( 24, 74)( 25, 73)( 26, 79)
( 27, 78)( 28, 77)( 29, 76)( 30, 75)( 31, 88)( 32, 87)( 33, 93)( 34, 92)
( 35, 91)( 36, 90)( 37, 89)( 38, 95)( 39, 94)( 40,100)( 41, 99)( 42, 98)
( 43, 97)( 44, 96)( 45,109)( 46,108)( 47,114)( 48,113)( 49,112)( 50,111)
( 51,110)( 52,102)( 53,101)( 54,107)( 55,106)( 56,105)( 57,104)( 58,103);;
s3 := ( 17, 24)( 18, 25)( 19, 26)( 20, 27)( 21, 28)( 22, 29)( 23, 30)( 31, 38)
( 32, 39)( 33, 40)( 34, 41)( 35, 42)( 36, 43)( 37, 44)( 59, 73)( 60, 74)
( 61, 75)( 62, 76)( 63, 77)( 64, 78)( 65, 79)( 66, 80)( 67, 81)( 68, 82)
( 69, 83)( 70, 84)( 71, 85)( 72, 86)( 87,108)( 88,109)( 89,110)( 90,111)
( 91,112)( 92,113)( 93,114)( 94,101)( 95,102)( 96,103)( 97,104)( 98,105)
( 99,106)(100,107);;
s4 := (115,116);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(116)!(1,2);
s1 := Sym(116)!(  4,  9)(  5,  8)(  6,  7)( 11, 16)( 12, 15)( 13, 14)( 17, 24)
( 18, 30)( 19, 29)( 20, 28)( 21, 27)( 22, 26)( 23, 25)( 32, 37)( 33, 36)
( 34, 35)( 39, 44)( 40, 43)( 41, 42)( 45, 52)( 46, 58)( 47, 57)( 48, 56)
( 49, 55)( 50, 54)( 51, 53)( 59, 87)( 60, 93)( 61, 92)( 62, 91)( 63, 90)
( 64, 89)( 65, 88)( 66, 94)( 67,100)( 68, 99)( 69, 98)( 70, 97)( 71, 96)
( 72, 95)( 73,108)( 74,114)( 75,113)( 76,112)( 77,111)( 78,110)( 79,109)
( 80,101)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102);
s2 := Sym(116)!(  3, 60)(  4, 59)(  5, 65)(  6, 64)(  7, 63)(  8, 62)(  9, 61)
( 10, 67)( 11, 66)( 12, 72)( 13, 71)( 14, 70)( 15, 69)( 16, 68)( 17, 81)
( 18, 80)( 19, 86)( 20, 85)( 21, 84)( 22, 83)( 23, 82)( 24, 74)( 25, 73)
( 26, 79)( 27, 78)( 28, 77)( 29, 76)( 30, 75)( 31, 88)( 32, 87)( 33, 93)
( 34, 92)( 35, 91)( 36, 90)( 37, 89)( 38, 95)( 39, 94)( 40,100)( 41, 99)
( 42, 98)( 43, 97)( 44, 96)( 45,109)( 46,108)( 47,114)( 48,113)( 49,112)
( 50,111)( 51,110)( 52,102)( 53,101)( 54,107)( 55,106)( 56,105)( 57,104)
( 58,103);
s3 := Sym(116)!( 17, 24)( 18, 25)( 19, 26)( 20, 27)( 21, 28)( 22, 29)( 23, 30)
( 31, 38)( 32, 39)( 33, 40)( 34, 41)( 35, 42)( 36, 43)( 37, 44)( 59, 73)
( 60, 74)( 61, 75)( 62, 76)( 63, 77)( 64, 78)( 65, 79)( 66, 80)( 67, 81)
( 68, 82)( 69, 83)( 70, 84)( 71, 85)( 72, 86)( 87,108)( 88,109)( 89,110)
( 90,111)( 91,112)( 92,113)( 93,114)( 94,101)( 95,102)( 96,103)( 97,104)
( 98,105)( 99,106)(100,107);
s4 := Sym(116)!(115,116);
poly := sub<Sym(116)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope