include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,56,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,56,2}*1792a
if this polytope has a name.
Group : SmallGroup(1792,141634)
Rank : 4
Schlafli Type : {4,56,2}
Number of vertices, edges, etc : 8, 224, 112, 2
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,56,2}*896a, {4,28,2}*896, {4,56,2}*896b
4-fold quotients : {4,28,2}*448, {2,56,2}*448
7-fold quotients : {4,8,2}*256a
8-fold quotients : {2,28,2}*224, {4,14,2}*224
14-fold quotients : {4,8,2}*128a, {4,8,2}*128b, {4,4,2}*128
16-fold quotients : {2,14,2}*112
28-fold quotients : {4,4,2}*64, {2,8,2}*64
32-fold quotients : {2,7,2}*56
56-fold quotients : {2,4,2}*32, {4,2,2}*32
112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,113)( 2,114)( 3,115)( 4,116)( 5,117)( 6,118)( 7,119)( 8,120)
( 9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)
( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)
( 25,137)( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)( 32,144)
( 33,145)( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)( 40,152)
( 41,153)( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)( 48,160)
( 49,161)( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)( 56,168)
( 57,176)( 58,177)( 59,178)( 60,179)( 61,180)( 62,181)( 63,182)( 64,169)
( 65,170)( 66,171)( 67,172)( 68,173)( 69,174)( 70,175)( 71,190)( 72,191)
( 73,192)( 74,193)( 75,194)( 76,195)( 77,196)( 78,183)( 79,184)( 80,185)
( 81,186)( 82,187)( 83,188)( 84,189)( 85,204)( 86,205)( 87,206)( 88,207)
( 89,208)( 90,209)( 91,210)( 92,197)( 93,198)( 94,199)( 95,200)( 96,201)
( 97,202)( 98,203)( 99,218)(100,219)(101,220)(102,221)(103,222)(104,223)
(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217)
(225,337)(226,338)(227,339)(228,340)(229,341)(230,342)(231,343)(232,344)
(233,345)(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)(240,352)
(241,353)(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)(248,360)
(249,361)(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)(256,368)
(257,369)(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)(264,376)
(265,377)(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)(272,384)
(273,385)(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)(280,392)
(281,400)(282,401)(283,402)(284,403)(285,404)(286,405)(287,406)(288,393)
(289,394)(290,395)(291,396)(292,397)(293,398)(294,399)(295,414)(296,415)
(297,416)(298,417)(299,418)(300,419)(301,420)(302,407)(303,408)(304,409)
(305,410)(306,411)(307,412)(308,413)(309,428)(310,429)(311,430)(312,431)
(313,432)(314,433)(315,434)(316,421)(317,422)(318,423)(319,424)(320,425)
(321,426)(322,427)(323,442)(324,443)(325,444)(326,445)(327,446)(328,447)
(329,448)(330,435)(331,436)(332,437)(333,438)(334,439)(335,440)(336,441);;
s1 := ( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)( 17, 20)
( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 30, 35)( 31, 34)( 32, 33)( 37, 42)
( 38, 41)( 39, 40)( 44, 49)( 45, 48)( 46, 47)( 51, 56)( 52, 55)( 53, 54)
( 57, 71)( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)( 63, 72)( 64, 78)
( 65, 84)( 66, 83)( 67, 82)( 68, 81)( 69, 80)( 70, 79)( 85, 99)( 86,105)
( 87,104)( 88,103)( 89,102)( 90,101)( 91,100)( 92,106)( 93,112)( 94,111)
( 95,110)( 96,109)( 97,108)( 98,107)(113,141)(114,147)(115,146)(116,145)
(117,144)(118,143)(119,142)(120,148)(121,154)(122,153)(123,152)(124,151)
(125,150)(126,149)(127,155)(128,161)(129,160)(130,159)(131,158)(132,157)
(133,156)(134,162)(135,168)(136,167)(137,166)(138,165)(139,164)(140,163)
(169,211)(170,217)(171,216)(172,215)(173,214)(174,213)(175,212)(176,218)
(177,224)(178,223)(179,222)(180,221)(181,220)(182,219)(183,197)(184,203)
(185,202)(186,201)(187,200)(188,199)(189,198)(190,204)(191,210)(192,209)
(193,208)(194,207)(195,206)(196,205)(225,281)(226,287)(227,286)(228,285)
(229,284)(230,283)(231,282)(232,288)(233,294)(234,293)(235,292)(236,291)
(237,290)(238,289)(239,295)(240,301)(241,300)(242,299)(243,298)(244,297)
(245,296)(246,302)(247,308)(248,307)(249,306)(250,305)(251,304)(252,303)
(253,309)(254,315)(255,314)(256,313)(257,312)(258,311)(259,310)(260,316)
(261,322)(262,321)(263,320)(264,319)(265,318)(266,317)(267,323)(268,329)
(269,328)(270,327)(271,326)(272,325)(273,324)(274,330)(275,336)(276,335)
(277,334)(278,333)(279,332)(280,331)(337,428)(338,434)(339,433)(340,432)
(341,431)(342,430)(343,429)(344,421)(345,427)(346,426)(347,425)(348,424)
(349,423)(350,422)(351,442)(352,448)(353,447)(354,446)(355,445)(356,444)
(357,443)(358,435)(359,441)(360,440)(361,439)(362,438)(363,437)(364,436)
(365,400)(366,406)(367,405)(368,404)(369,403)(370,402)(371,401)(372,393)
(373,399)(374,398)(375,397)(376,396)(377,395)(378,394)(379,414)(380,420)
(381,419)(382,418)(383,417)(384,416)(385,415)(386,407)(387,413)(388,412)
(389,411)(390,410)(391,409)(392,408);;
s2 := ( 1,226)( 2,225)( 3,231)( 4,230)( 5,229)( 6,228)( 7,227)( 8,233)
( 9,232)( 10,238)( 11,237)( 12,236)( 13,235)( 14,234)( 15,240)( 16,239)
( 17,245)( 18,244)( 19,243)( 20,242)( 21,241)( 22,247)( 23,246)( 24,252)
( 25,251)( 26,250)( 27,249)( 28,248)( 29,261)( 30,260)( 31,266)( 32,265)
( 33,264)( 34,263)( 35,262)( 36,254)( 37,253)( 38,259)( 39,258)( 40,257)
( 41,256)( 42,255)( 43,275)( 44,274)( 45,280)( 46,279)( 47,278)( 48,277)
( 49,276)( 50,268)( 51,267)( 52,273)( 53,272)( 54,271)( 55,270)( 56,269)
( 57,296)( 58,295)( 59,301)( 60,300)( 61,299)( 62,298)( 63,297)( 64,303)
( 65,302)( 66,308)( 67,307)( 68,306)( 69,305)( 70,304)( 71,282)( 72,281)
( 73,287)( 74,286)( 75,285)( 76,284)( 77,283)( 78,289)( 79,288)( 80,294)
( 81,293)( 82,292)( 83,291)( 84,290)( 85,331)( 86,330)( 87,336)( 88,335)
( 89,334)( 90,333)( 91,332)( 92,324)( 93,323)( 94,329)( 95,328)( 96,327)
( 97,326)( 98,325)( 99,317)(100,316)(101,322)(102,321)(103,320)(104,319)
(105,318)(106,310)(107,309)(108,315)(109,314)(110,313)(111,312)(112,311)
(113,338)(114,337)(115,343)(116,342)(117,341)(118,340)(119,339)(120,345)
(121,344)(122,350)(123,349)(124,348)(125,347)(126,346)(127,352)(128,351)
(129,357)(130,356)(131,355)(132,354)(133,353)(134,359)(135,358)(136,364)
(137,363)(138,362)(139,361)(140,360)(141,373)(142,372)(143,378)(144,377)
(145,376)(146,375)(147,374)(148,366)(149,365)(150,371)(151,370)(152,369)
(153,368)(154,367)(155,387)(156,386)(157,392)(158,391)(159,390)(160,389)
(161,388)(162,380)(163,379)(164,385)(165,384)(166,383)(167,382)(168,381)
(169,408)(170,407)(171,413)(172,412)(173,411)(174,410)(175,409)(176,415)
(177,414)(178,420)(179,419)(180,418)(181,417)(182,416)(183,394)(184,393)
(185,399)(186,398)(187,397)(188,396)(189,395)(190,401)(191,400)(192,406)
(193,405)(194,404)(195,403)(196,402)(197,443)(198,442)(199,448)(200,447)
(201,446)(202,445)(203,444)(204,436)(205,435)(206,441)(207,440)(208,439)
(209,438)(210,437)(211,429)(212,428)(213,434)(214,433)(215,432)(216,431)
(217,430)(218,422)(219,421)(220,427)(221,426)(222,425)(223,424)(224,423);;
s3 := (449,450);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(450)!( 1,113)( 2,114)( 3,115)( 4,116)( 5,117)( 6,118)( 7,119)
( 8,120)( 9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)
( 16,128)( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)
( 24,136)( 25,137)( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)
( 32,144)( 33,145)( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)
( 40,152)( 41,153)( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)
( 48,160)( 49,161)( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)
( 56,168)( 57,176)( 58,177)( 59,178)( 60,179)( 61,180)( 62,181)( 63,182)
( 64,169)( 65,170)( 66,171)( 67,172)( 68,173)( 69,174)( 70,175)( 71,190)
( 72,191)( 73,192)( 74,193)( 75,194)( 76,195)( 77,196)( 78,183)( 79,184)
( 80,185)( 81,186)( 82,187)( 83,188)( 84,189)( 85,204)( 86,205)( 87,206)
( 88,207)( 89,208)( 90,209)( 91,210)( 92,197)( 93,198)( 94,199)( 95,200)
( 96,201)( 97,202)( 98,203)( 99,218)(100,219)(101,220)(102,221)(103,222)
(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)
(112,217)(225,337)(226,338)(227,339)(228,340)(229,341)(230,342)(231,343)
(232,344)(233,345)(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)
(240,352)(241,353)(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)
(248,360)(249,361)(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)
(256,368)(257,369)(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)
(264,376)(265,377)(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)
(272,384)(273,385)(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)
(280,392)(281,400)(282,401)(283,402)(284,403)(285,404)(286,405)(287,406)
(288,393)(289,394)(290,395)(291,396)(292,397)(293,398)(294,399)(295,414)
(296,415)(297,416)(298,417)(299,418)(300,419)(301,420)(302,407)(303,408)
(304,409)(305,410)(306,411)(307,412)(308,413)(309,428)(310,429)(311,430)
(312,431)(313,432)(314,433)(315,434)(316,421)(317,422)(318,423)(319,424)
(320,425)(321,426)(322,427)(323,442)(324,443)(325,444)(326,445)(327,446)
(328,447)(329,448)(330,435)(331,436)(332,437)(333,438)(334,439)(335,440)
(336,441);
s1 := Sym(450)!( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)
( 17, 20)( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 30, 35)( 31, 34)( 32, 33)
( 37, 42)( 38, 41)( 39, 40)( 44, 49)( 45, 48)( 46, 47)( 51, 56)( 52, 55)
( 53, 54)( 57, 71)( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)( 63, 72)
( 64, 78)( 65, 84)( 66, 83)( 67, 82)( 68, 81)( 69, 80)( 70, 79)( 85, 99)
( 86,105)( 87,104)( 88,103)( 89,102)( 90,101)( 91,100)( 92,106)( 93,112)
( 94,111)( 95,110)( 96,109)( 97,108)( 98,107)(113,141)(114,147)(115,146)
(116,145)(117,144)(118,143)(119,142)(120,148)(121,154)(122,153)(123,152)
(124,151)(125,150)(126,149)(127,155)(128,161)(129,160)(130,159)(131,158)
(132,157)(133,156)(134,162)(135,168)(136,167)(137,166)(138,165)(139,164)
(140,163)(169,211)(170,217)(171,216)(172,215)(173,214)(174,213)(175,212)
(176,218)(177,224)(178,223)(179,222)(180,221)(181,220)(182,219)(183,197)
(184,203)(185,202)(186,201)(187,200)(188,199)(189,198)(190,204)(191,210)
(192,209)(193,208)(194,207)(195,206)(196,205)(225,281)(226,287)(227,286)
(228,285)(229,284)(230,283)(231,282)(232,288)(233,294)(234,293)(235,292)
(236,291)(237,290)(238,289)(239,295)(240,301)(241,300)(242,299)(243,298)
(244,297)(245,296)(246,302)(247,308)(248,307)(249,306)(250,305)(251,304)
(252,303)(253,309)(254,315)(255,314)(256,313)(257,312)(258,311)(259,310)
(260,316)(261,322)(262,321)(263,320)(264,319)(265,318)(266,317)(267,323)
(268,329)(269,328)(270,327)(271,326)(272,325)(273,324)(274,330)(275,336)
(276,335)(277,334)(278,333)(279,332)(280,331)(337,428)(338,434)(339,433)
(340,432)(341,431)(342,430)(343,429)(344,421)(345,427)(346,426)(347,425)
(348,424)(349,423)(350,422)(351,442)(352,448)(353,447)(354,446)(355,445)
(356,444)(357,443)(358,435)(359,441)(360,440)(361,439)(362,438)(363,437)
(364,436)(365,400)(366,406)(367,405)(368,404)(369,403)(370,402)(371,401)
(372,393)(373,399)(374,398)(375,397)(376,396)(377,395)(378,394)(379,414)
(380,420)(381,419)(382,418)(383,417)(384,416)(385,415)(386,407)(387,413)
(388,412)(389,411)(390,410)(391,409)(392,408);
s2 := Sym(450)!( 1,226)( 2,225)( 3,231)( 4,230)( 5,229)( 6,228)( 7,227)
( 8,233)( 9,232)( 10,238)( 11,237)( 12,236)( 13,235)( 14,234)( 15,240)
( 16,239)( 17,245)( 18,244)( 19,243)( 20,242)( 21,241)( 22,247)( 23,246)
( 24,252)( 25,251)( 26,250)( 27,249)( 28,248)( 29,261)( 30,260)( 31,266)
( 32,265)( 33,264)( 34,263)( 35,262)( 36,254)( 37,253)( 38,259)( 39,258)
( 40,257)( 41,256)( 42,255)( 43,275)( 44,274)( 45,280)( 46,279)( 47,278)
( 48,277)( 49,276)( 50,268)( 51,267)( 52,273)( 53,272)( 54,271)( 55,270)
( 56,269)( 57,296)( 58,295)( 59,301)( 60,300)( 61,299)( 62,298)( 63,297)
( 64,303)( 65,302)( 66,308)( 67,307)( 68,306)( 69,305)( 70,304)( 71,282)
( 72,281)( 73,287)( 74,286)( 75,285)( 76,284)( 77,283)( 78,289)( 79,288)
( 80,294)( 81,293)( 82,292)( 83,291)( 84,290)( 85,331)( 86,330)( 87,336)
( 88,335)( 89,334)( 90,333)( 91,332)( 92,324)( 93,323)( 94,329)( 95,328)
( 96,327)( 97,326)( 98,325)( 99,317)(100,316)(101,322)(102,321)(103,320)
(104,319)(105,318)(106,310)(107,309)(108,315)(109,314)(110,313)(111,312)
(112,311)(113,338)(114,337)(115,343)(116,342)(117,341)(118,340)(119,339)
(120,345)(121,344)(122,350)(123,349)(124,348)(125,347)(126,346)(127,352)
(128,351)(129,357)(130,356)(131,355)(132,354)(133,353)(134,359)(135,358)
(136,364)(137,363)(138,362)(139,361)(140,360)(141,373)(142,372)(143,378)
(144,377)(145,376)(146,375)(147,374)(148,366)(149,365)(150,371)(151,370)
(152,369)(153,368)(154,367)(155,387)(156,386)(157,392)(158,391)(159,390)
(160,389)(161,388)(162,380)(163,379)(164,385)(165,384)(166,383)(167,382)
(168,381)(169,408)(170,407)(171,413)(172,412)(173,411)(174,410)(175,409)
(176,415)(177,414)(178,420)(179,419)(180,418)(181,417)(182,416)(183,394)
(184,393)(185,399)(186,398)(187,397)(188,396)(189,395)(190,401)(191,400)
(192,406)(193,405)(194,404)(195,403)(196,402)(197,443)(198,442)(199,448)
(200,447)(201,446)(202,445)(203,444)(204,436)(205,435)(206,441)(207,440)
(208,439)(209,438)(210,437)(211,429)(212,428)(213,434)(214,433)(215,432)
(216,431)(217,430)(218,422)(219,421)(220,427)(221,426)(222,425)(223,424)
(224,423);
s3 := Sym(450)!(449,450);
poly := sub<Sym(450)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope