Polytope of Type {4,56,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,56,2}*896a
if this polytope has a name.
Group : SmallGroup(896,10817)
Rank : 4
Schlafli Type : {4,56,2}
Number of vertices, edges, etc : 4, 112, 56, 2
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,56,2,2} of size 1792
Vertex Figure Of :
   {2,4,56,2} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,28,2}*448, {2,56,2}*448
   4-fold quotients : {2,28,2}*224, {4,14,2}*224
   7-fold quotients : {4,8,2}*128a
   8-fold quotients : {2,14,2}*112
   14-fold quotients : {4,4,2}*64, {2,8,2}*64
   16-fold quotients : {2,7,2}*56
   28-fold quotients : {2,4,2}*32, {4,2,2}*32
   56-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,56,2}*1792a, {8,56,2}*1792b, {8,56,2}*1792c, {4,56,4}*1792d, {4,112,2}*1792a, {4,112,2}*1792b
Permutation Representation (GAP) :
s0 := ( 57, 71)( 58, 72)( 59, 73)( 60, 74)( 61, 75)( 62, 76)( 63, 77)( 64, 78)
( 65, 79)( 66, 80)( 67, 81)( 68, 82)( 69, 83)( 70, 84)( 85, 99)( 86,100)
( 87,101)( 88,102)( 89,103)( 90,104)( 91,105)( 92,106)( 93,107)( 94,108)
( 95,109)( 96,110)( 97,111)( 98,112);;
s1 := (  1, 57)(  2, 63)(  3, 62)(  4, 61)(  5, 60)(  6, 59)(  7, 58)(  8, 64)
(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)( 24, 83)
( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29, 92)( 30, 98)( 31, 97)( 32, 96)
( 33, 95)( 34, 94)( 35, 93)( 36, 85)( 37, 91)( 38, 90)( 39, 89)( 40, 88)
( 41, 87)( 42, 86)( 43,106)( 44,112)( 45,111)( 46,110)( 47,109)( 48,108)
( 49,107)( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100);;
s2 := (  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 16)( 17, 21)
( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 37)( 30, 36)( 31, 42)( 32, 41)
( 33, 40)( 34, 39)( 35, 38)( 43, 51)( 44, 50)( 45, 56)( 46, 55)( 47, 54)
( 48, 53)( 49, 52)( 57, 86)( 58, 85)( 59, 91)( 60, 90)( 61, 89)( 62, 88)
( 63, 87)( 64, 93)( 65, 92)( 66, 98)( 67, 97)( 68, 96)( 69, 95)( 70, 94)
( 71,100)( 72, 99)( 73,105)( 74,104)( 75,103)( 76,102)( 77,101)( 78,107)
( 79,106)( 80,112)( 81,111)( 82,110)( 83,109)( 84,108);;
s3 := (113,114);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(114)!( 57, 71)( 58, 72)( 59, 73)( 60, 74)( 61, 75)( 62, 76)( 63, 77)
( 64, 78)( 65, 79)( 66, 80)( 67, 81)( 68, 82)( 69, 83)( 70, 84)( 85, 99)
( 86,100)( 87,101)( 88,102)( 89,103)( 90,104)( 91,105)( 92,106)( 93,107)
( 94,108)( 95,109)( 96,110)( 97,111)( 98,112);
s1 := Sym(114)!(  1, 57)(  2, 63)(  3, 62)(  4, 61)(  5, 60)(  6, 59)(  7, 58)
(  8, 64)(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)
( 24, 83)( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29, 92)( 30, 98)( 31, 97)
( 32, 96)( 33, 95)( 34, 94)( 35, 93)( 36, 85)( 37, 91)( 38, 90)( 39, 89)
( 40, 88)( 41, 87)( 42, 86)( 43,106)( 44,112)( 45,111)( 46,110)( 47,109)
( 48,108)( 49,107)( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)
( 56,100);
s2 := Sym(114)!(  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 16)
( 17, 21)( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 37)( 30, 36)( 31, 42)
( 32, 41)( 33, 40)( 34, 39)( 35, 38)( 43, 51)( 44, 50)( 45, 56)( 46, 55)
( 47, 54)( 48, 53)( 49, 52)( 57, 86)( 58, 85)( 59, 91)( 60, 90)( 61, 89)
( 62, 88)( 63, 87)( 64, 93)( 65, 92)( 66, 98)( 67, 97)( 68, 96)( 69, 95)
( 70, 94)( 71,100)( 72, 99)( 73,105)( 74,104)( 75,103)( 76,102)( 77,101)
( 78,107)( 79,106)( 80,112)( 81,111)( 82,110)( 83,109)( 84,108);
s3 := Sym(114)!(113,114);
poly := sub<Sym(114)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope