Polytope of Type {56,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {56,4,2}*1792a
if this polytope has a name.
Group : SmallGroup(1792,141634)
Rank : 4
Schlafli Type : {56,4,2}
Number of vertices, edges, etc : 112, 224, 8, 2
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {56,4,2}*896a, {28,4,2}*896, {56,4,2}*896b
   4-fold quotients : {28,4,2}*448, {56,2,2}*448
   7-fold quotients : {8,4,2}*256a
   8-fold quotients : {28,2,2}*224, {14,4,2}*224
   14-fold quotients : {8,4,2}*128a, {8,4,2}*128b, {4,4,2}*128
   16-fold quotients : {14,2,2}*112
   28-fold quotients : {4,4,2}*64, {8,2,2}*64
   32-fold quotients : {7,2,2}*56
   56-fold quotients : {2,4,2}*32, {4,2,2}*32
   112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,225)(  2,231)(  3,230)(  4,229)(  5,228)(  6,227)(  7,226)(  8,232)
(  9,238)( 10,237)( 11,236)( 12,235)( 13,234)( 14,233)( 15,239)( 16,245)
( 17,244)( 18,243)( 19,242)( 20,241)( 21,240)( 22,246)( 23,252)( 24,251)
( 25,250)( 26,249)( 27,248)( 28,247)( 29,260)( 30,266)( 31,265)( 32,264)
( 33,263)( 34,262)( 35,261)( 36,253)( 37,259)( 38,258)( 39,257)( 40,256)
( 41,255)( 42,254)( 43,274)( 44,280)( 45,279)( 46,278)( 47,277)( 48,276)
( 49,275)( 50,267)( 51,273)( 52,272)( 53,271)( 54,270)( 55,269)( 56,268)
( 57,295)( 58,301)( 59,300)( 60,299)( 61,298)( 62,297)( 63,296)( 64,302)
( 65,308)( 66,307)( 67,306)( 68,305)( 69,304)( 70,303)( 71,281)( 72,287)
( 73,286)( 74,285)( 75,284)( 76,283)( 77,282)( 78,288)( 79,294)( 80,293)
( 81,292)( 82,291)( 83,290)( 84,289)( 85,330)( 86,336)( 87,335)( 88,334)
( 89,333)( 90,332)( 91,331)( 92,323)( 93,329)( 94,328)( 95,327)( 96,326)
( 97,325)( 98,324)( 99,316)(100,322)(101,321)(102,320)(103,319)(104,318)
(105,317)(106,309)(107,315)(108,314)(109,313)(110,312)(111,311)(112,310)
(113,337)(114,343)(115,342)(116,341)(117,340)(118,339)(119,338)(120,344)
(121,350)(122,349)(123,348)(124,347)(125,346)(126,345)(127,351)(128,357)
(129,356)(130,355)(131,354)(132,353)(133,352)(134,358)(135,364)(136,363)
(137,362)(138,361)(139,360)(140,359)(141,372)(142,378)(143,377)(144,376)
(145,375)(146,374)(147,373)(148,365)(149,371)(150,370)(151,369)(152,368)
(153,367)(154,366)(155,386)(156,392)(157,391)(158,390)(159,389)(160,388)
(161,387)(162,379)(163,385)(164,384)(165,383)(166,382)(167,381)(168,380)
(169,407)(170,413)(171,412)(172,411)(173,410)(174,409)(175,408)(176,414)
(177,420)(178,419)(179,418)(180,417)(181,416)(182,415)(183,393)(184,399)
(185,398)(186,397)(187,396)(188,395)(189,394)(190,400)(191,406)(192,405)
(193,404)(194,403)(195,402)(196,401)(197,442)(198,448)(199,447)(200,446)
(201,445)(202,444)(203,443)(204,435)(205,441)(206,440)(207,439)(208,438)
(209,437)(210,436)(211,428)(212,434)(213,433)(214,432)(215,431)(216,430)
(217,429)(218,421)(219,427)(220,426)(221,425)(222,424)(223,423)(224,422);;
s1 := (  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 16)( 17, 21)
( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 30)( 31, 35)( 32, 34)( 36, 37)
( 38, 42)( 39, 41)( 43, 44)( 45, 49)( 46, 48)( 50, 51)( 52, 56)( 53, 55)
( 57, 72)( 58, 71)( 59, 77)( 60, 76)( 61, 75)( 62, 74)( 63, 73)( 64, 79)
( 65, 78)( 66, 84)( 67, 83)( 68, 82)( 69, 81)( 70, 80)( 85,100)( 86, 99)
( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)( 92,107)( 93,106)( 94,112)
( 95,111)( 96,110)( 97,109)( 98,108)(113,142)(114,141)(115,147)(116,146)
(117,145)(118,144)(119,143)(120,149)(121,148)(122,154)(123,153)(124,152)
(125,151)(126,150)(127,156)(128,155)(129,161)(130,160)(131,159)(132,158)
(133,157)(134,163)(135,162)(136,168)(137,167)(138,166)(139,165)(140,164)
(169,212)(170,211)(171,217)(172,216)(173,215)(174,214)(175,213)(176,219)
(177,218)(178,224)(179,223)(180,222)(181,221)(182,220)(183,198)(184,197)
(185,203)(186,202)(187,201)(188,200)(189,199)(190,205)(191,204)(192,210)
(193,209)(194,208)(195,207)(196,206)(225,282)(226,281)(227,287)(228,286)
(229,285)(230,284)(231,283)(232,289)(233,288)(234,294)(235,293)(236,292)
(237,291)(238,290)(239,296)(240,295)(241,301)(242,300)(243,299)(244,298)
(245,297)(246,303)(247,302)(248,308)(249,307)(250,306)(251,305)(252,304)
(253,310)(254,309)(255,315)(256,314)(257,313)(258,312)(259,311)(260,317)
(261,316)(262,322)(263,321)(264,320)(265,319)(266,318)(267,324)(268,323)
(269,329)(270,328)(271,327)(272,326)(273,325)(274,331)(275,330)(276,336)
(277,335)(278,334)(279,333)(280,332)(337,429)(338,428)(339,434)(340,433)
(341,432)(342,431)(343,430)(344,422)(345,421)(346,427)(347,426)(348,425)
(349,424)(350,423)(351,443)(352,442)(353,448)(354,447)(355,446)(356,445)
(357,444)(358,436)(359,435)(360,441)(361,440)(362,439)(363,438)(364,437)
(365,401)(366,400)(367,406)(368,405)(369,404)(370,403)(371,402)(372,394)
(373,393)(374,399)(375,398)(376,397)(377,396)(378,395)(379,415)(380,414)
(381,420)(382,419)(383,418)(384,417)(385,416)(386,408)(387,407)(388,413)
(389,412)(390,411)(391,410)(392,409);;
s2 := (  1,113)(  2,114)(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)(  8,120)
(  9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)
( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)
( 25,137)( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)( 32,144)
( 33,145)( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)( 40,152)
( 41,153)( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)( 48,160)
( 49,161)( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)( 56,168)
( 57,176)( 58,177)( 59,178)( 60,179)( 61,180)( 62,181)( 63,182)( 64,169)
( 65,170)( 66,171)( 67,172)( 68,173)( 69,174)( 70,175)( 71,190)( 72,191)
( 73,192)( 74,193)( 75,194)( 76,195)( 77,196)( 78,183)( 79,184)( 80,185)
( 81,186)( 82,187)( 83,188)( 84,189)( 85,204)( 86,205)( 87,206)( 88,207)
( 89,208)( 90,209)( 91,210)( 92,197)( 93,198)( 94,199)( 95,200)( 96,201)
( 97,202)( 98,203)( 99,218)(100,219)(101,220)(102,221)(103,222)(104,223)
(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217)
(225,337)(226,338)(227,339)(228,340)(229,341)(230,342)(231,343)(232,344)
(233,345)(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)(240,352)
(241,353)(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)(248,360)
(249,361)(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)(256,368)
(257,369)(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)(264,376)
(265,377)(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)(272,384)
(273,385)(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)(280,392)
(281,400)(282,401)(283,402)(284,403)(285,404)(286,405)(287,406)(288,393)
(289,394)(290,395)(291,396)(292,397)(293,398)(294,399)(295,414)(296,415)
(297,416)(298,417)(299,418)(300,419)(301,420)(302,407)(303,408)(304,409)
(305,410)(306,411)(307,412)(308,413)(309,428)(310,429)(311,430)(312,431)
(313,432)(314,433)(315,434)(316,421)(317,422)(318,423)(319,424)(320,425)
(321,426)(322,427)(323,442)(324,443)(325,444)(326,445)(327,446)(328,447)
(329,448)(330,435)(331,436)(332,437)(333,438)(334,439)(335,440)(336,441);;
s3 := (449,450);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(450)!(  1,225)(  2,231)(  3,230)(  4,229)(  5,228)(  6,227)(  7,226)
(  8,232)(  9,238)( 10,237)( 11,236)( 12,235)( 13,234)( 14,233)( 15,239)
( 16,245)( 17,244)( 18,243)( 19,242)( 20,241)( 21,240)( 22,246)( 23,252)
( 24,251)( 25,250)( 26,249)( 27,248)( 28,247)( 29,260)( 30,266)( 31,265)
( 32,264)( 33,263)( 34,262)( 35,261)( 36,253)( 37,259)( 38,258)( 39,257)
( 40,256)( 41,255)( 42,254)( 43,274)( 44,280)( 45,279)( 46,278)( 47,277)
( 48,276)( 49,275)( 50,267)( 51,273)( 52,272)( 53,271)( 54,270)( 55,269)
( 56,268)( 57,295)( 58,301)( 59,300)( 60,299)( 61,298)( 62,297)( 63,296)
( 64,302)( 65,308)( 66,307)( 67,306)( 68,305)( 69,304)( 70,303)( 71,281)
( 72,287)( 73,286)( 74,285)( 75,284)( 76,283)( 77,282)( 78,288)( 79,294)
( 80,293)( 81,292)( 82,291)( 83,290)( 84,289)( 85,330)( 86,336)( 87,335)
( 88,334)( 89,333)( 90,332)( 91,331)( 92,323)( 93,329)( 94,328)( 95,327)
( 96,326)( 97,325)( 98,324)( 99,316)(100,322)(101,321)(102,320)(103,319)
(104,318)(105,317)(106,309)(107,315)(108,314)(109,313)(110,312)(111,311)
(112,310)(113,337)(114,343)(115,342)(116,341)(117,340)(118,339)(119,338)
(120,344)(121,350)(122,349)(123,348)(124,347)(125,346)(126,345)(127,351)
(128,357)(129,356)(130,355)(131,354)(132,353)(133,352)(134,358)(135,364)
(136,363)(137,362)(138,361)(139,360)(140,359)(141,372)(142,378)(143,377)
(144,376)(145,375)(146,374)(147,373)(148,365)(149,371)(150,370)(151,369)
(152,368)(153,367)(154,366)(155,386)(156,392)(157,391)(158,390)(159,389)
(160,388)(161,387)(162,379)(163,385)(164,384)(165,383)(166,382)(167,381)
(168,380)(169,407)(170,413)(171,412)(172,411)(173,410)(174,409)(175,408)
(176,414)(177,420)(178,419)(179,418)(180,417)(181,416)(182,415)(183,393)
(184,399)(185,398)(186,397)(187,396)(188,395)(189,394)(190,400)(191,406)
(192,405)(193,404)(194,403)(195,402)(196,401)(197,442)(198,448)(199,447)
(200,446)(201,445)(202,444)(203,443)(204,435)(205,441)(206,440)(207,439)
(208,438)(209,437)(210,436)(211,428)(212,434)(213,433)(214,432)(215,431)
(216,430)(217,429)(218,421)(219,427)(220,426)(221,425)(222,424)(223,423)
(224,422);
s1 := Sym(450)!(  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 16)
( 17, 21)( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 30)( 31, 35)( 32, 34)
( 36, 37)( 38, 42)( 39, 41)( 43, 44)( 45, 49)( 46, 48)( 50, 51)( 52, 56)
( 53, 55)( 57, 72)( 58, 71)( 59, 77)( 60, 76)( 61, 75)( 62, 74)( 63, 73)
( 64, 79)( 65, 78)( 66, 84)( 67, 83)( 68, 82)( 69, 81)( 70, 80)( 85,100)
( 86, 99)( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)( 92,107)( 93,106)
( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)(113,142)(114,141)(115,147)
(116,146)(117,145)(118,144)(119,143)(120,149)(121,148)(122,154)(123,153)
(124,152)(125,151)(126,150)(127,156)(128,155)(129,161)(130,160)(131,159)
(132,158)(133,157)(134,163)(135,162)(136,168)(137,167)(138,166)(139,165)
(140,164)(169,212)(170,211)(171,217)(172,216)(173,215)(174,214)(175,213)
(176,219)(177,218)(178,224)(179,223)(180,222)(181,221)(182,220)(183,198)
(184,197)(185,203)(186,202)(187,201)(188,200)(189,199)(190,205)(191,204)
(192,210)(193,209)(194,208)(195,207)(196,206)(225,282)(226,281)(227,287)
(228,286)(229,285)(230,284)(231,283)(232,289)(233,288)(234,294)(235,293)
(236,292)(237,291)(238,290)(239,296)(240,295)(241,301)(242,300)(243,299)
(244,298)(245,297)(246,303)(247,302)(248,308)(249,307)(250,306)(251,305)
(252,304)(253,310)(254,309)(255,315)(256,314)(257,313)(258,312)(259,311)
(260,317)(261,316)(262,322)(263,321)(264,320)(265,319)(266,318)(267,324)
(268,323)(269,329)(270,328)(271,327)(272,326)(273,325)(274,331)(275,330)
(276,336)(277,335)(278,334)(279,333)(280,332)(337,429)(338,428)(339,434)
(340,433)(341,432)(342,431)(343,430)(344,422)(345,421)(346,427)(347,426)
(348,425)(349,424)(350,423)(351,443)(352,442)(353,448)(354,447)(355,446)
(356,445)(357,444)(358,436)(359,435)(360,441)(361,440)(362,439)(363,438)
(364,437)(365,401)(366,400)(367,406)(368,405)(369,404)(370,403)(371,402)
(372,394)(373,393)(374,399)(375,398)(376,397)(377,396)(378,395)(379,415)
(380,414)(381,420)(382,419)(383,418)(384,417)(385,416)(386,408)(387,407)
(388,413)(389,412)(390,411)(391,410)(392,409);
s2 := Sym(450)!(  1,113)(  2,114)(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)
(  8,120)(  9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)
( 16,128)( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)
( 24,136)( 25,137)( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)
( 32,144)( 33,145)( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)
( 40,152)( 41,153)( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)
( 48,160)( 49,161)( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)
( 56,168)( 57,176)( 58,177)( 59,178)( 60,179)( 61,180)( 62,181)( 63,182)
( 64,169)( 65,170)( 66,171)( 67,172)( 68,173)( 69,174)( 70,175)( 71,190)
( 72,191)( 73,192)( 74,193)( 75,194)( 76,195)( 77,196)( 78,183)( 79,184)
( 80,185)( 81,186)( 82,187)( 83,188)( 84,189)( 85,204)( 86,205)( 87,206)
( 88,207)( 89,208)( 90,209)( 91,210)( 92,197)( 93,198)( 94,199)( 95,200)
( 96,201)( 97,202)( 98,203)( 99,218)(100,219)(101,220)(102,221)(103,222)
(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)
(112,217)(225,337)(226,338)(227,339)(228,340)(229,341)(230,342)(231,343)
(232,344)(233,345)(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)
(240,352)(241,353)(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)
(248,360)(249,361)(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)
(256,368)(257,369)(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)
(264,376)(265,377)(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)
(272,384)(273,385)(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)
(280,392)(281,400)(282,401)(283,402)(284,403)(285,404)(286,405)(287,406)
(288,393)(289,394)(290,395)(291,396)(292,397)(293,398)(294,399)(295,414)
(296,415)(297,416)(298,417)(299,418)(300,419)(301,420)(302,407)(303,408)
(304,409)(305,410)(306,411)(307,412)(308,413)(309,428)(310,429)(311,430)
(312,431)(313,432)(314,433)(315,434)(316,421)(317,422)(318,423)(319,424)
(320,425)(321,426)(322,427)(323,442)(324,443)(325,444)(326,445)(327,446)
(328,447)(329,448)(330,435)(331,436)(332,437)(333,438)(334,439)(335,440)
(336,441);
s3 := Sym(450)!(449,450);
poly := sub<Sym(450)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope