include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,2,8,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,8,8}*1792d
if this polytope has a name.
Group : SmallGroup(1792,150681)
Rank : 5
Schlafli Type : {7,2,8,8}
Number of vertices, edges, etc : 7, 7, 8, 32, 8
Order of s0s1s2s3s4 : 56
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,4,8}*896b, {7,2,8,4}*896b
4-fold quotients : {7,2,4,4}*448
8-fold quotients : {7,2,2,4}*224, {7,2,4,2}*224
16-fold quotients : {7,2,2,2}*112
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 8,24)( 9,25)(10,26)(11,27)(12,31)(13,30)(14,29)(15,28)(16,33)(17,32)
(18,35)(19,34)(20,38)(21,39)(22,36)(23,37)(40,56)(41,57)(42,58)(43,59)(44,63)
(45,62)(46,61)(47,60)(48,65)(49,64)(50,67)(51,66)(52,70)(53,71)(54,68)
(55,69);;
s3 := (12,15)(13,14)(16,18)(17,19)(20,21)(22,23)(24,28)(25,29)(26,30)(27,31)
(32,38)(33,39)(34,36)(35,37)(40,48)(41,49)(42,50)(43,51)(44,55)(45,54)(46,53)
(47,52)(56,69)(57,68)(58,71)(59,70)(60,65)(61,64)(62,67)(63,66);;
s4 := ( 8,40)( 9,41)(10,42)(11,43)(12,45)(13,44)(14,47)(15,46)(16,50)(17,51)
(18,48)(19,49)(20,55)(21,54)(22,53)(23,52)(24,56)(25,57)(26,58)(27,59)(28,61)
(29,60)(30,63)(31,62)(32,66)(33,67)(34,64)(35,65)(36,71)(37,70)(38,69)
(39,68);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s4*s2*s3*s4*s2*s3*s4*s3*s4*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(71)!(2,3)(4,5)(6,7);
s1 := Sym(71)!(1,2)(3,4)(5,6);
s2 := Sym(71)!( 8,24)( 9,25)(10,26)(11,27)(12,31)(13,30)(14,29)(15,28)(16,33)
(17,32)(18,35)(19,34)(20,38)(21,39)(22,36)(23,37)(40,56)(41,57)(42,58)(43,59)
(44,63)(45,62)(46,61)(47,60)(48,65)(49,64)(50,67)(51,66)(52,70)(53,71)(54,68)
(55,69);
s3 := Sym(71)!(12,15)(13,14)(16,18)(17,19)(20,21)(22,23)(24,28)(25,29)(26,30)
(27,31)(32,38)(33,39)(34,36)(35,37)(40,48)(41,49)(42,50)(43,51)(44,55)(45,54)
(46,53)(47,52)(56,69)(57,68)(58,71)(59,70)(60,65)(61,64)(62,67)(63,66);
s4 := Sym(71)!( 8,40)( 9,41)(10,42)(11,43)(12,45)(13,44)(14,47)(15,46)(16,50)
(17,51)(18,48)(19,49)(20,55)(21,54)(22,53)(23,52)(24,56)(25,57)(26,58)(27,59)
(28,61)(29,60)(30,63)(31,62)(32,66)(33,67)(34,64)(35,65)(36,71)(37,70)(38,69)
(39,68);
poly := sub<Sym(71)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s4*s2*s3*s4*s2*s3*s4*s3*s4*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope