include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,2,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,8}*224
if this polytope has a name.
Group : SmallGroup(224,105)
Rank : 4
Schlafli Type : {7,2,8}
Number of vertices, edges, etc : 7, 7, 8, 8
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{7,2,8,2} of size 448
{7,2,8,4} of size 896
{7,2,8,4} of size 896
{7,2,8,6} of size 1344
{7,2,8,3} of size 1344
{7,2,8,4} of size 1792
{7,2,8,8} of size 1792
{7,2,8,8} of size 1792
{7,2,8,8} of size 1792
{7,2,8,8} of size 1792
{7,2,8,4} of size 1792
Vertex Figure Of :
{2,7,2,8} of size 448
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,4}*112
4-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
2-fold covers : {7,2,16}*448, {14,2,8}*448
3-fold covers : {7,2,24}*672, {21,2,8}*672
4-fold covers : {7,2,32}*896, {28,2,8}*896, {14,4,8}*896a, {14,2,16}*896
5-fold covers : {7,2,40}*1120, {35,2,8}*1120
6-fold covers : {7,2,48}*1344, {21,2,16}*1344, {14,2,24}*1344, {14,6,8}*1344, {42,2,8}*1344
7-fold covers : {49,2,8}*1568, {7,2,56}*1568, {7,14,8}*1568
8-fold covers : {7,2,64}*1792, {14,4,8}*1792a, {14,8,8}*1792a, {14,8,8}*1792b, {56,2,8}*1792, {28,4,8}*1792a, {14,4,16}*1792a, {14,4,16}*1792b, {28,2,16}*1792, {14,2,32}*1792
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 9,10)(11,12)(13,14);;
s3 := ( 8, 9)(10,11)(12,13)(14,15);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(15)!(2,3)(4,5)(6,7);
s1 := Sym(15)!(1,2)(3,4)(5,6);
s2 := Sym(15)!( 9,10)(11,12)(13,14);
s3 := Sym(15)!( 8, 9)(10,11)(12,13)(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope