Polytope of Type {28,8,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,8,4}*1792b
if this polytope has a name.
Group : SmallGroup(1792,201202)
Rank : 4
Schlafli Type : {28,8,4}
Number of vertices, edges, etc : 28, 112, 16, 4
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {28,4,4}*896, {14,8,4}*896b
   4-fold quotients : {28,4,2}*448, {28,2,4}*448, {14,4,4}*448
   7-fold quotients : {4,8,4}*256b
   8-fold quotients : {28,2,2}*224, {14,2,4}*224, {14,4,2}*224
   14-fold quotients : {4,4,4}*128, {2,8,4}*128b
   16-fold quotients : {7,2,4}*112, {14,2,2}*112
   28-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
   32-fold quotients : {7,2,2}*56
   56-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
   112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 57)(  2, 63)(  3, 62)(  4, 61)(  5, 60)(  6, 59)(  7, 58)(  8, 64)
(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)( 24, 83)
( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29, 85)( 30, 91)( 31, 90)( 32, 89)
( 33, 88)( 34, 87)( 35, 86)( 36, 92)( 37, 98)( 38, 97)( 39, 96)( 40, 95)
( 41, 94)( 42, 93)( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)
( 49,100)( 50,106)( 51,112)( 52,111)( 53,110)( 54,109)( 55,108)( 56,107)
(113,183)(114,189)(115,188)(116,187)(117,186)(118,185)(119,184)(120,190)
(121,196)(122,195)(123,194)(124,193)(125,192)(126,191)(127,169)(128,175)
(129,174)(130,173)(131,172)(132,171)(133,170)(134,176)(135,182)(136,181)
(137,180)(138,179)(139,178)(140,177)(141,211)(142,217)(143,216)(144,215)
(145,214)(146,213)(147,212)(148,218)(149,224)(150,223)(151,222)(152,221)
(153,220)(154,219)(155,197)(156,203)(157,202)(158,201)(159,200)(160,199)
(161,198)(162,204)(163,210)(164,209)(165,208)(166,207)(167,206)(168,205);;
s1 := (  1,114)(  2,113)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)(  8,121)
(  9,120)( 10,126)( 11,125)( 12,124)( 13,123)( 14,122)( 15,128)( 16,127)
( 17,133)( 18,132)( 19,131)( 20,130)( 21,129)( 22,135)( 23,134)( 24,140)
( 25,139)( 26,138)( 27,137)( 28,136)( 29,149)( 30,148)( 31,154)( 32,153)
( 33,152)( 34,151)( 35,150)( 36,142)( 37,141)( 38,147)( 39,146)( 40,145)
( 41,144)( 42,143)( 43,163)( 44,162)( 45,168)( 46,167)( 47,166)( 48,165)
( 49,164)( 50,156)( 51,155)( 52,161)( 53,160)( 54,159)( 55,158)( 56,157)
( 57,170)( 58,169)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)( 64,177)
( 65,176)( 66,182)( 67,181)( 68,180)( 69,179)( 70,178)( 71,184)( 72,183)
( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,191)( 79,190)( 80,196)
( 81,195)( 82,194)( 83,193)( 84,192)( 85,205)( 86,204)( 87,210)( 88,209)
( 89,208)( 90,207)( 91,206)( 92,198)( 93,197)( 94,203)( 95,202)( 96,201)
( 97,200)( 98,199)( 99,219)(100,218)(101,224)(102,223)(103,222)(104,221)
(105,220)(106,212)(107,211)(108,217)(109,216)(110,215)(111,214)(112,213);;
s2 := ( 29, 36)( 30, 37)( 31, 38)( 32, 39)( 33, 40)( 34, 41)( 35, 42)( 43, 50)
( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 85, 92)( 86, 93)
( 87, 94)( 88, 95)( 89, 96)( 90, 97)( 91, 98)( 99,106)(100,107)(101,108)
(102,109)(103,110)(104,111)(105,112)(113,141)(114,142)(115,143)(116,144)
(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)
(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)
(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)
(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)
(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)
(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)
(193,221)(194,222)(195,223)(196,224);;
s3 := (  1, 57)(  2, 58)(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)(  8, 64)
(  9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 92)( 30, 93)( 31, 94)( 32, 95)
( 33, 96)( 34, 97)( 35, 98)( 36, 85)( 37, 86)( 38, 87)( 39, 88)( 40, 89)
( 41, 90)( 42, 91)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)( 48,111)
( 49,112)( 50, 99)( 51,100)( 52,101)( 53,102)( 54,103)( 55,104)( 56,105)
(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176)
(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)(128,184)
(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)(136,192)
(137,193)(138,194)(139,195)(140,196)(141,204)(142,205)(143,206)(144,207)
(145,208)(146,209)(147,210)(148,197)(149,198)(150,199)(151,200)(152,201)
(153,202)(154,203)(155,218)(156,219)(157,220)(158,221)(159,222)(160,223)
(161,224)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)(168,217);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(224)!(  1, 57)(  2, 63)(  3, 62)(  4, 61)(  5, 60)(  6, 59)(  7, 58)
(  8, 64)(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)
( 24, 83)( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29, 85)( 30, 91)( 31, 90)
( 32, 89)( 33, 88)( 34, 87)( 35, 86)( 36, 92)( 37, 98)( 38, 97)( 39, 96)
( 40, 95)( 41, 94)( 42, 93)( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)
( 48,101)( 49,100)( 50,106)( 51,112)( 52,111)( 53,110)( 54,109)( 55,108)
( 56,107)(113,183)(114,189)(115,188)(116,187)(117,186)(118,185)(119,184)
(120,190)(121,196)(122,195)(123,194)(124,193)(125,192)(126,191)(127,169)
(128,175)(129,174)(130,173)(131,172)(132,171)(133,170)(134,176)(135,182)
(136,181)(137,180)(138,179)(139,178)(140,177)(141,211)(142,217)(143,216)
(144,215)(145,214)(146,213)(147,212)(148,218)(149,224)(150,223)(151,222)
(152,221)(153,220)(154,219)(155,197)(156,203)(157,202)(158,201)(159,200)
(160,199)(161,198)(162,204)(163,210)(164,209)(165,208)(166,207)(167,206)
(168,205);
s1 := Sym(224)!(  1,114)(  2,113)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)
(  8,121)(  9,120)( 10,126)( 11,125)( 12,124)( 13,123)( 14,122)( 15,128)
( 16,127)( 17,133)( 18,132)( 19,131)( 20,130)( 21,129)( 22,135)( 23,134)
( 24,140)( 25,139)( 26,138)( 27,137)( 28,136)( 29,149)( 30,148)( 31,154)
( 32,153)( 33,152)( 34,151)( 35,150)( 36,142)( 37,141)( 38,147)( 39,146)
( 40,145)( 41,144)( 42,143)( 43,163)( 44,162)( 45,168)( 46,167)( 47,166)
( 48,165)( 49,164)( 50,156)( 51,155)( 52,161)( 53,160)( 54,159)( 55,158)
( 56,157)( 57,170)( 58,169)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)
( 64,177)( 65,176)( 66,182)( 67,181)( 68,180)( 69,179)( 70,178)( 71,184)
( 72,183)( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,191)( 79,190)
( 80,196)( 81,195)( 82,194)( 83,193)( 84,192)( 85,205)( 86,204)( 87,210)
( 88,209)( 89,208)( 90,207)( 91,206)( 92,198)( 93,197)( 94,203)( 95,202)
( 96,201)( 97,200)( 98,199)( 99,219)(100,218)(101,224)(102,223)(103,222)
(104,221)(105,220)(106,212)(107,211)(108,217)(109,216)(110,215)(111,214)
(112,213);
s2 := Sym(224)!( 29, 36)( 30, 37)( 31, 38)( 32, 39)( 33, 40)( 34, 41)( 35, 42)
( 43, 50)( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 85, 92)
( 86, 93)( 87, 94)( 88, 95)( 89, 96)( 90, 97)( 91, 98)( 99,106)(100,107)
(101,108)(102,109)(103,110)(104,111)(105,112)(113,141)(114,142)(115,143)
(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)
(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)
(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)
(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)
(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)
(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)
(192,220)(193,221)(194,222)(195,223)(196,224);
s3 := Sym(224)!(  1, 57)(  2, 58)(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)
(  8, 64)(  9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)
( 16, 72)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 92)( 30, 93)( 31, 94)
( 32, 95)( 33, 96)( 34, 97)( 35, 98)( 36, 85)( 37, 86)( 38, 87)( 39, 88)
( 40, 89)( 41, 90)( 42, 91)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)
( 48,111)( 49,112)( 50, 99)( 51,100)( 52,101)( 53,102)( 54,103)( 55,104)
( 56,105)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)
(120,176)(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)
(128,184)(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)
(136,192)(137,193)(138,194)(139,195)(140,196)(141,204)(142,205)(143,206)
(144,207)(145,208)(146,209)(147,210)(148,197)(149,198)(150,199)(151,200)
(152,201)(153,202)(154,203)(155,218)(156,219)(157,220)(158,221)(159,222)
(160,223)(161,224)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)
(168,217);
poly := sub<Sym(224)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope