include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,8,28}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,28}*1792c
if this polytope has a name.
Group : SmallGroup(1792,201205)
Rank : 4
Schlafli Type : {4,8,28}
Number of vertices, edges, etc : 4, 16, 112, 28
Order of s0s1s2s3 : 56
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,28}*896, {2,8,28}*896b
4-fold quotients : {2,4,28}*448, {4,2,28}*448, {4,4,14}*448
7-fold quotients : {4,8,4}*256b
8-fold quotients : {2,2,28}*224, {2,4,14}*224, {4,2,14}*224
14-fold quotients : {4,4,4}*128, {2,8,4}*128b
16-fold quotients : {4,2,7}*112, {2,2,14}*112
28-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {2,2,7}*56
56-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 85)( 30, 86)( 31, 87)( 32, 88)
( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)( 40, 96)
( 41, 97)( 42, 98)( 43, 99)( 44,100)( 45,101)( 46,102)( 47,103)( 48,104)
( 49,105)( 50,106)( 51,107)( 52,108)( 53,109)( 54,110)( 55,111)( 56,112)
(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)(120,190)
(121,191)(122,192)(123,193)(124,194)(125,195)(126,196)(127,169)(128,170)
(129,171)(130,172)(131,173)(132,174)(133,175)(134,176)(135,177)(136,178)
(137,179)(138,180)(139,181)(140,182)(141,211)(142,212)(143,213)(144,214)
(145,215)(146,216)(147,217)(148,218)(149,219)(150,220)(151,221)(152,222)
(153,223)(154,224)(155,197)(156,198)(157,199)(158,200)(159,201)(160,202)
(161,203)(162,204)(163,205)(164,206)(165,207)(166,208)(167,209)(168,210);;
s1 := ( 1,113)( 2,114)( 3,115)( 4,116)( 5,117)( 6,118)( 7,119)( 8,120)
( 9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)
( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)
( 25,137)( 26,138)( 27,139)( 28,140)( 29,148)( 30,149)( 31,150)( 32,151)
( 33,152)( 34,153)( 35,154)( 36,141)( 37,142)( 38,143)( 39,144)( 40,145)
( 41,146)( 42,147)( 43,162)( 44,163)( 45,164)( 46,165)( 47,166)( 48,167)
( 49,168)( 50,155)( 51,156)( 52,157)( 53,158)( 54,159)( 55,160)( 56,161)
( 57,169)( 58,170)( 59,171)( 60,172)( 61,173)( 62,174)( 63,175)( 64,176)
( 65,177)( 66,178)( 67,179)( 68,180)( 69,181)( 70,182)( 71,183)( 72,184)
( 73,185)( 74,186)( 75,187)( 76,188)( 77,189)( 78,190)( 79,191)( 80,192)
( 81,193)( 82,194)( 83,195)( 84,196)( 85,204)( 86,205)( 87,206)( 88,207)
( 89,208)( 90,209)( 91,210)( 92,197)( 93,198)( 94,199)( 95,200)( 96,201)
( 97,202)( 98,203)( 99,218)(100,219)(101,220)(102,221)(103,222)(104,223)
(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217);;
s2 := ( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)( 17, 20)
( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)( 31, 41)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 43, 50)( 44, 56)( 45, 55)( 46, 54)( 47, 53)
( 48, 52)( 49, 51)( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)( 67, 68)
( 72, 77)( 73, 76)( 74, 75)( 79, 84)( 80, 83)( 81, 82)( 85, 92)( 86, 98)
( 87, 97)( 88, 96)( 89, 95)( 90, 94)( 91, 93)( 99,106)(100,112)(101,111)
(102,110)(103,109)(104,108)(105,107)(113,141)(114,147)(115,146)(116,145)
(117,144)(118,143)(119,142)(120,148)(121,154)(122,153)(123,152)(124,151)
(125,150)(126,149)(127,155)(128,161)(129,160)(130,159)(131,158)(132,157)
(133,156)(134,162)(135,168)(136,167)(137,166)(138,165)(139,164)(140,163)
(169,197)(170,203)(171,202)(172,201)(173,200)(174,199)(175,198)(176,204)
(177,210)(178,209)(179,208)(180,207)(181,206)(182,205)(183,211)(184,217)
(185,216)(186,215)(187,214)(188,213)(189,212)(190,218)(191,224)(192,223)
(193,222)(194,221)(195,220)(196,219);;
s3 := ( 1, 58)( 2, 57)( 3, 63)( 4, 62)( 5, 61)( 6, 60)( 7, 59)( 8, 65)
( 9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)( 16, 71)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)( 24, 84)
( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29, 93)( 30, 92)( 31, 98)( 32, 97)
( 33, 96)( 34, 95)( 35, 94)( 36, 86)( 37, 85)( 38, 91)( 39, 90)( 40, 89)
( 41, 88)( 42, 87)( 43,107)( 44,106)( 45,112)( 46,111)( 47,110)( 48,109)
( 49,108)( 50,100)( 51, 99)( 52,105)( 53,104)( 54,103)( 55,102)( 56,101)
(113,170)(114,169)(115,175)(116,174)(117,173)(118,172)(119,171)(120,177)
(121,176)(122,182)(123,181)(124,180)(125,179)(126,178)(127,184)(128,183)
(129,189)(130,188)(131,187)(132,186)(133,185)(134,191)(135,190)(136,196)
(137,195)(138,194)(139,193)(140,192)(141,205)(142,204)(143,210)(144,209)
(145,208)(146,207)(147,206)(148,198)(149,197)(150,203)(151,202)(152,201)
(153,200)(154,199)(155,219)(156,218)(157,224)(158,223)(159,222)(160,221)
(161,220)(162,212)(163,211)(164,217)(165,216)(166,215)(167,214)(168,213);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(224)!( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)
( 16, 72)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 85)( 30, 86)( 31, 87)
( 32, 88)( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)
( 40, 96)( 41, 97)( 42, 98)( 43, 99)( 44,100)( 45,101)( 46,102)( 47,103)
( 48,104)( 49,105)( 50,106)( 51,107)( 52,108)( 53,109)( 54,110)( 55,111)
( 56,112)(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)
(120,190)(121,191)(122,192)(123,193)(124,194)(125,195)(126,196)(127,169)
(128,170)(129,171)(130,172)(131,173)(132,174)(133,175)(134,176)(135,177)
(136,178)(137,179)(138,180)(139,181)(140,182)(141,211)(142,212)(143,213)
(144,214)(145,215)(146,216)(147,217)(148,218)(149,219)(150,220)(151,221)
(152,222)(153,223)(154,224)(155,197)(156,198)(157,199)(158,200)(159,201)
(160,202)(161,203)(162,204)(163,205)(164,206)(165,207)(166,208)(167,209)
(168,210);
s1 := Sym(224)!( 1,113)( 2,114)( 3,115)( 4,116)( 5,117)( 6,118)( 7,119)
( 8,120)( 9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)
( 16,128)( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)
( 24,136)( 25,137)( 26,138)( 27,139)( 28,140)( 29,148)( 30,149)( 31,150)
( 32,151)( 33,152)( 34,153)( 35,154)( 36,141)( 37,142)( 38,143)( 39,144)
( 40,145)( 41,146)( 42,147)( 43,162)( 44,163)( 45,164)( 46,165)( 47,166)
( 48,167)( 49,168)( 50,155)( 51,156)( 52,157)( 53,158)( 54,159)( 55,160)
( 56,161)( 57,169)( 58,170)( 59,171)( 60,172)( 61,173)( 62,174)( 63,175)
( 64,176)( 65,177)( 66,178)( 67,179)( 68,180)( 69,181)( 70,182)( 71,183)
( 72,184)( 73,185)( 74,186)( 75,187)( 76,188)( 77,189)( 78,190)( 79,191)
( 80,192)( 81,193)( 82,194)( 83,195)( 84,196)( 85,204)( 86,205)( 87,206)
( 88,207)( 89,208)( 90,209)( 91,210)( 92,197)( 93,198)( 94,199)( 95,200)
( 96,201)( 97,202)( 98,203)( 99,218)(100,219)(101,220)(102,221)(103,222)
(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)
(112,217);
s2 := Sym(224)!( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 16, 21)
( 17, 20)( 18, 19)( 23, 28)( 24, 27)( 25, 26)( 29, 36)( 30, 42)( 31, 41)
( 32, 40)( 33, 39)( 34, 38)( 35, 37)( 43, 50)( 44, 56)( 45, 55)( 46, 54)
( 47, 53)( 48, 52)( 49, 51)( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)
( 67, 68)( 72, 77)( 73, 76)( 74, 75)( 79, 84)( 80, 83)( 81, 82)( 85, 92)
( 86, 98)( 87, 97)( 88, 96)( 89, 95)( 90, 94)( 91, 93)( 99,106)(100,112)
(101,111)(102,110)(103,109)(104,108)(105,107)(113,141)(114,147)(115,146)
(116,145)(117,144)(118,143)(119,142)(120,148)(121,154)(122,153)(123,152)
(124,151)(125,150)(126,149)(127,155)(128,161)(129,160)(130,159)(131,158)
(132,157)(133,156)(134,162)(135,168)(136,167)(137,166)(138,165)(139,164)
(140,163)(169,197)(170,203)(171,202)(172,201)(173,200)(174,199)(175,198)
(176,204)(177,210)(178,209)(179,208)(180,207)(181,206)(182,205)(183,211)
(184,217)(185,216)(186,215)(187,214)(188,213)(189,212)(190,218)(191,224)
(192,223)(193,222)(194,221)(195,220)(196,219);
s3 := Sym(224)!( 1, 58)( 2, 57)( 3, 63)( 4, 62)( 5, 61)( 6, 60)( 7, 59)
( 8, 65)( 9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)
( 16, 71)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)
( 24, 84)( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29, 93)( 30, 92)( 31, 98)
( 32, 97)( 33, 96)( 34, 95)( 35, 94)( 36, 86)( 37, 85)( 38, 91)( 39, 90)
( 40, 89)( 41, 88)( 42, 87)( 43,107)( 44,106)( 45,112)( 46,111)( 47,110)
( 48,109)( 49,108)( 50,100)( 51, 99)( 52,105)( 53,104)( 54,103)( 55,102)
( 56,101)(113,170)(114,169)(115,175)(116,174)(117,173)(118,172)(119,171)
(120,177)(121,176)(122,182)(123,181)(124,180)(125,179)(126,178)(127,184)
(128,183)(129,189)(130,188)(131,187)(132,186)(133,185)(134,191)(135,190)
(136,196)(137,195)(138,194)(139,193)(140,192)(141,205)(142,204)(143,210)
(144,209)(145,208)(146,207)(147,206)(148,198)(149,197)(150,203)(151,202)
(152,201)(153,200)(154,199)(155,219)(156,218)(157,224)(158,223)(159,222)
(160,221)(161,220)(162,212)(163,211)(164,217)(165,216)(166,215)(167,214)
(168,213);
poly := sub<Sym(224)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope