include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,28}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,28}*448
if this polytope has a name.
Group : SmallGroup(448,1002)
Rank : 4
Schlafli Type : {4,2,28}
Number of vertices, edges, etc : 4, 4, 28, 28
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,2,28,2} of size 896
{4,2,28,4} of size 1792
Vertex Figure Of :
{2,4,2,28} of size 896
{3,4,2,28} of size 1344
{4,4,2,28} of size 1792
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,28}*224, {4,2,14}*224
4-fold quotients : {4,2,7}*112, {2,2,14}*112
7-fold quotients : {4,2,4}*64
8-fold quotients : {2,2,7}*56
14-fold quotients : {2,2,4}*32, {4,2,2}*32
28-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,28}*896, {4,2,56}*896, {8,2,28}*896
3-fold covers : {12,2,28}*1344, {4,6,28}*1344a, {4,2,84}*1344
4-fold covers : {8,2,56}*1792, {8,4,28}*1792a, {4,4,56}*1792a, {8,4,28}*1792b, {4,4,56}*1792b, {4,8,28}*1792a, {4,4,28}*1792a, {4,4,28}*1792b, {4,8,28}*1792b, {4,8,28}*1792c, {4,8,28}*1792d, {16,2,28}*1792, {4,2,112}*1792
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 7)( 8, 9)(11,14)(12,13)(15,16)(17,18)(19,22)(20,21)(23,24)(25,26)
(27,30)(28,29)(31,32);;
s3 := ( 5,11)( 6, 8)( 7,17)( 9,19)(10,13)(12,15)(14,25)(16,27)(18,21)(20,23)
(22,31)(24,28)(26,29)(30,32);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(32)!(2,3);
s1 := Sym(32)!(1,2)(3,4);
s2 := Sym(32)!( 6, 7)( 8, 9)(11,14)(12,13)(15,16)(17,18)(19,22)(20,21)(23,24)
(25,26)(27,30)(28,29)(31,32);
s3 := Sym(32)!( 5,11)( 6, 8)( 7,17)( 9,19)(10,13)(12,15)(14,25)(16,27)(18,21)
(20,23)(22,31)(24,28)(26,29)(30,32);
poly := sub<Sym(32)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope