Polytope of Type {56,16}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {56,16}*1792a
if this polytope has a name.
Group : SmallGroup(1792,82963)
Rank : 3
Schlafli Type : {56,16}
Number of vertices, edges, etc : 56, 448, 16
Order of s0s1s2 : 112
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {56,8}*896a
   4-fold quotients : {56,4}*448a, {28,8}*448b
   7-fold quotients : {8,16}*256a
   8-fold quotients : {28,4}*224, {56,2}*224
   14-fold quotients : {8,8}*128c
   16-fold quotients : {28,2}*112, {14,4}*112
   28-fold quotients : {8,4}*64a, {4,8}*64b
   32-fold quotients : {14,2}*56
   56-fold quotients : {4,4}*32, {8,2}*32
   64-fold quotients : {7,2}*28
   112-fold quotients : {2,4}*16, {4,2}*16
   224-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)( 16, 28)
( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 29, 43)( 30, 49)( 31, 48)
( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 36, 50)( 37, 56)( 38, 55)( 39, 54)
( 40, 53)( 41, 52)( 42, 51)( 58, 63)( 59, 62)( 60, 61)( 65, 70)( 66, 69)
( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)( 77, 79)
( 85, 99)( 86,105)( 87,104)( 88,103)( 89,102)( 90,101)( 91,100)( 92,106)
( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)( 98,107);;
s1 := (  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 23)( 16, 22)
( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 29, 44)( 30, 43)( 31, 49)
( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 51)( 37, 50)( 38, 56)( 39, 55)
( 40, 54)( 41, 53)( 42, 52)( 57, 86)( 58, 85)( 59, 91)( 60, 90)( 61, 89)
( 62, 88)( 63, 87)( 64, 93)( 65, 92)( 66, 98)( 67, 97)( 68, 96)( 69, 95)
( 70, 94)( 71,107)( 72,106)( 73,112)( 74,111)( 75,110)( 76,109)( 77,108)
( 78,100)( 79, 99)( 80,105)( 81,104)( 82,103)( 83,102)( 84,101);;
s2 := (  1, 57)(  2, 58)(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)(  8, 64)
(  9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 78)( 16, 79)
( 17, 80)( 18, 81)( 19, 82)( 20, 83)( 21, 84)( 22, 71)( 23, 72)( 24, 73)
( 25, 74)( 26, 75)( 27, 76)( 28, 77)( 29, 99)( 30,100)( 31,101)( 32,102)
( 33,103)( 34,104)( 35,105)( 36,106)( 37,107)( 38,108)( 39,109)( 40,110)
( 41,111)( 42,112)( 43, 85)( 44, 86)( 45, 87)( 46, 88)( 47, 89)( 48, 90)
( 49, 91)( 50, 92)( 51, 93)( 52, 94)( 53, 95)( 54, 96)( 55, 97)( 56, 98);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 29, 43)( 30, 49)
( 31, 48)( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 36, 50)( 37, 56)( 38, 55)
( 39, 54)( 40, 53)( 41, 52)( 42, 51)( 58, 63)( 59, 62)( 60, 61)( 65, 70)
( 66, 69)( 67, 68)( 71, 78)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)
( 77, 79)( 85, 99)( 86,105)( 87,104)( 88,103)( 89,102)( 90,101)( 91,100)
( 92,106)( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)( 98,107);
s1 := Sym(112)!(  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 23)
( 16, 22)( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 29, 44)( 30, 43)
( 31, 49)( 32, 48)( 33, 47)( 34, 46)( 35, 45)( 36, 51)( 37, 50)( 38, 56)
( 39, 55)( 40, 54)( 41, 53)( 42, 52)( 57, 86)( 58, 85)( 59, 91)( 60, 90)
( 61, 89)( 62, 88)( 63, 87)( 64, 93)( 65, 92)( 66, 98)( 67, 97)( 68, 96)
( 69, 95)( 70, 94)( 71,107)( 72,106)( 73,112)( 74,111)( 75,110)( 76,109)
( 77,108)( 78,100)( 79, 99)( 80,105)( 81,104)( 82,103)( 83,102)( 84,101);
s2 := Sym(112)!(  1, 57)(  2, 58)(  3, 59)(  4, 60)(  5, 61)(  6, 62)(  7, 63)
(  8, 64)(  9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 78)
( 16, 79)( 17, 80)( 18, 81)( 19, 82)( 20, 83)( 21, 84)( 22, 71)( 23, 72)
( 24, 73)( 25, 74)( 26, 75)( 27, 76)( 28, 77)( 29, 99)( 30,100)( 31,101)
( 32,102)( 33,103)( 34,104)( 35,105)( 36,106)( 37,107)( 38,108)( 39,109)
( 40,110)( 41,111)( 42,112)( 43, 85)( 44, 86)( 45, 87)( 46, 88)( 47, 89)
( 48, 90)( 49, 91)( 50, 92)( 51, 93)( 52, 94)( 53, 95)( 54, 96)( 55, 97)
( 56, 98);
poly := sub<Sym(112)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope