Polytope of Type {16}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16}*32
Also Known As : 16-gon, {16}. if this polytope has another name.
Group : SmallGroup(32,18)
Rank : 2
Schlafli Type : {16}
Number of vertices, edges, etc : 16, 16
Order of s0s1 : 16
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {16,2} of size 64
   {16,4} of size 128
   {16,4} of size 128
   {16,6} of size 192
   {16,4} of size 256
   {16,4} of size 256
   {16,8} of size 256
   {16,8} of size 256
   {16,8} of size 256
   {16,8} of size 256
   {16,8} of size 256
   {16,8} of size 256
   {16,10} of size 320
   {16,12} of size 384
   {16,12} of size 384
   {16,14} of size 448
   {16,4} of size 512
   {16,8} of size 512
   {16,8} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,8} of size 512
   {16,8} of size 512
   {16,8} of size 512
   {16,8} of size 512
   {16,4} of size 512
   {16,4} of size 512
   {16,4} of size 512
   {16,8} of size 512
   {16,8} of size 512
   {16,4} of size 512
   {16,4} of size 512
   {16,18} of size 576
   {16,6} of size 576
   {16,20} of size 640
   {16,20} of size 640
   {16,22} of size 704
   {16,12} of size 768
   {16,12} of size 768
   {16,24} of size 768
   {16,24} of size 768
   {16,24} of size 768
   {16,24} of size 768
   {16,24} of size 768
   {16,24} of size 768
   {16,3} of size 768
   {16,3} of size 768
   {16,6} of size 768
   {16,6} of size 768
   {16,6} of size 768
   {16,26} of size 832
   {16,28} of size 896
   {16,28} of size 896
   {16,30} of size 960
   {16,34} of size 1088
   {16,36} of size 1152
   {16,4} of size 1152
   {16,12} of size 1152
   {16,36} of size 1152
   {16,4} of size 1152
   {16,12} of size 1152
   {16,38} of size 1216
   {16,20} of size 1280
   {16,20} of size 1280
   {16,40} of size 1280
   {16,40} of size 1280
   {16,40} of size 1280
   {16,40} of size 1280
   {16,40} of size 1280
   {16,40} of size 1280
   {16,42} of size 1344
   {16,3} of size 1344
   {16,3} of size 1344
   {16,6} of size 1344
   {16,6} of size 1344
   {16,7} of size 1344
   {16,7} of size 1344
   {16,44} of size 1408
   {16,44} of size 1408
   {16,46} of size 1472
   {16,50} of size 1600
   {16,10} of size 1600
   {16,52} of size 1664
   {16,52} of size 1664
   {16,54} of size 1728
   {16,6} of size 1728
   {16,6} of size 1728
   {16,28} of size 1792
   {16,28} of size 1792
   {16,56} of size 1792
   {16,56} of size 1792
   {16,56} of size 1792
   {16,56} of size 1792
   {16,56} of size 1792
   {16,56} of size 1792
   {16,58} of size 1856
   {16,60} of size 1920
   {16,60} of size 1920
   {16,10} of size 1920
   {16,10} of size 1920
   {16,62} of size 1984
Vertex Figure Of :
   {2,16} of size 64
   {4,16} of size 128
   {4,16} of size 128
   {6,16} of size 192
   {4,16} of size 256
   {4,16} of size 256
   {8,16} of size 256
   {8,16} of size 256
   {8,16} of size 256
   {8,16} of size 256
   {8,16} of size 256
   {8,16} of size 256
   {10,16} of size 320
   {12,16} of size 384
   {12,16} of size 384
   {14,16} of size 448
   {4,16} of size 512
   {8,16} of size 512
   {8,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {16,16} of size 512
   {8,16} of size 512
   {8,16} of size 512
   {8,16} of size 512
   {8,16} of size 512
   {4,16} of size 512
   {4,16} of size 512
   {4,16} of size 512
   {8,16} of size 512
   {8,16} of size 512
   {4,16} of size 512
   {4,16} of size 512
   {18,16} of size 576
   {6,16} of size 576
   {20,16} of size 640
   {20,16} of size 640
   {22,16} of size 704
   {12,16} of size 768
   {12,16} of size 768
   {24,16} of size 768
   {24,16} of size 768
   {24,16} of size 768
   {24,16} of size 768
   {24,16} of size 768
   {24,16} of size 768
   {3,16} of size 768
   {3,16} of size 768
   {6,16} of size 768
   {6,16} of size 768
   {6,16} of size 768
   {26,16} of size 832
   {28,16} of size 896
   {28,16} of size 896
   {30,16} of size 960
   {34,16} of size 1088
   {36,16} of size 1152
   {4,16} of size 1152
   {12,16} of size 1152
   {36,16} of size 1152
   {4,16} of size 1152
   {12,16} of size 1152
   {38,16} of size 1216
   {20,16} of size 1280
   {20,16} of size 1280
   {40,16} of size 1280
   {40,16} of size 1280
   {40,16} of size 1280
   {40,16} of size 1280
   {40,16} of size 1280
   {40,16} of size 1280
   {42,16} of size 1344
   {3,16} of size 1344
   {3,16} of size 1344
   {6,16} of size 1344
   {6,16} of size 1344
   {7,16} of size 1344
   {7,16} of size 1344
   {44,16} of size 1408
   {44,16} of size 1408
   {46,16} of size 1472
   {50,16} of size 1600
   {10,16} of size 1600
   {52,16} of size 1664
   {52,16} of size 1664
   {54,16} of size 1728
   {6,16} of size 1728
   {6,16} of size 1728
   {28,16} of size 1792
   {28,16} of size 1792
   {56,16} of size 1792
   {56,16} of size 1792
   {56,16} of size 1792
   {56,16} of size 1792
   {56,16} of size 1792
   {56,16} of size 1792
   {58,16} of size 1856
   {60,16} of size 1920
   {60,16} of size 1920
   {10,16} of size 1920
   {10,16} of size 1920
   {62,16} of size 1984
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8}*16
   4-fold quotients : {4}*8
   8-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {32}*64
   3-fold covers : {48}*96
   4-fold covers : {64}*128
   5-fold covers : {80}*160
   6-fold covers : {96}*192
   7-fold covers : {112}*224
   8-fold covers : {128}*256
   9-fold covers : {144}*288
   10-fold covers : {160}*320
   11-fold covers : {176}*352
   12-fold covers : {192}*384
   13-fold covers : {208}*416
   14-fold covers : {224}*448
   15-fold covers : {240}*480
   16-fold covers : {256}*512
   17-fold covers : {272}*544
   18-fold covers : {288}*576
   19-fold covers : {304}*608
   20-fold covers : {320}*640
   21-fold covers : {336}*672
   22-fold covers : {352}*704
   23-fold covers : {368}*736
   24-fold covers : {384}*768
   25-fold covers : {400}*800
   26-fold covers : {416}*832
   27-fold covers : {432}*864
   28-fold covers : {448}*896
   29-fold covers : {464}*928
   30-fold covers : {480}*960
   31-fold covers : {496}*992
   33-fold covers : {528}*1056
   34-fold covers : {544}*1088
   35-fold covers : {560}*1120
   36-fold covers : {576}*1152
   37-fold covers : {592}*1184
   38-fold covers : {608}*1216
   39-fold covers : {624}*1248
   40-fold covers : {640}*1280
   41-fold covers : {656}*1312
   42-fold covers : {672}*1344
   43-fold covers : {688}*1376
   44-fold covers : {704}*1408
   45-fold covers : {720}*1440
   46-fold covers : {736}*1472
   47-fold covers : {752}*1504
   49-fold covers : {784}*1568
   50-fold covers : {800}*1600
   51-fold covers : {816}*1632
   52-fold covers : {832}*1664
   53-fold covers : {848}*1696
   54-fold covers : {864}*1728
   55-fold covers : {880}*1760
   56-fold covers : {896}*1792
   57-fold covers : {912}*1824
   58-fold covers : {928}*1856
   59-fold covers : {944}*1888
   60-fold covers : {960}*1920
   61-fold covers : {976}*1952
   62-fold covers : {992}*1984
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(16)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
poly := sub<Sym(16)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope