Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*1800c
if this polytope has a name.
Group : SmallGroup(1800,586)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 150, 450, 150
Order of s0s1s2 : 30
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,3}*900
   3-fold quotients : {6,6}*600a
   6-fold quotients : {6,3}*300
   25-fold quotients : {6,6}*72b
   50-fold quotients : {6,3}*36
   75-fold quotients : {2,6}*24
   150-fold quotients : {2,3}*12
   225-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 25)(  7, 21)(  8, 22)(  9, 23)( 10, 24)( 11, 19)( 12, 20)( 13, 16)
( 14, 17)( 15, 18)( 31, 50)( 32, 46)( 33, 47)( 34, 48)( 35, 49)( 36, 44)
( 37, 45)( 38, 41)( 39, 42)( 40, 43)( 56, 75)( 57, 71)( 58, 72)( 59, 73)
( 60, 74)( 61, 69)( 62, 70)( 63, 66)( 64, 67)( 65, 68)( 76,151)( 77,152)
( 78,153)( 79,154)( 80,155)( 81,175)( 82,171)( 83,172)( 84,173)( 85,174)
( 86,169)( 87,170)( 88,166)( 89,167)( 90,168)( 91,163)( 92,164)( 93,165)
( 94,161)( 95,162)( 96,157)( 97,158)( 98,159)( 99,160)(100,156)(101,176)
(102,177)(103,178)(104,179)(105,180)(106,200)(107,196)(108,197)(109,198)
(110,199)(111,194)(112,195)(113,191)(114,192)(115,193)(116,188)(117,189)
(118,190)(119,186)(120,187)(121,182)(122,183)(123,184)(124,185)(125,181)
(126,201)(127,202)(128,203)(129,204)(130,205)(131,225)(132,221)(133,222)
(134,223)(135,224)(136,219)(137,220)(138,216)(139,217)(140,218)(141,213)
(142,214)(143,215)(144,211)(145,212)(146,207)(147,208)(148,209)(149,210)
(150,206)(231,250)(232,246)(233,247)(234,248)(235,249)(236,244)(237,245)
(238,241)(239,242)(240,243)(256,275)(257,271)(258,272)(259,273)(260,274)
(261,269)(262,270)(263,266)(264,267)(265,268)(281,300)(282,296)(283,297)
(284,298)(285,299)(286,294)(287,295)(288,291)(289,292)(290,293)(301,376)
(302,377)(303,378)(304,379)(305,380)(306,400)(307,396)(308,397)(309,398)
(310,399)(311,394)(312,395)(313,391)(314,392)(315,393)(316,388)(317,389)
(318,390)(319,386)(320,387)(321,382)(322,383)(323,384)(324,385)(325,381)
(326,401)(327,402)(328,403)(329,404)(330,405)(331,425)(332,421)(333,422)
(334,423)(335,424)(336,419)(337,420)(338,416)(339,417)(340,418)(341,413)
(342,414)(343,415)(344,411)(345,412)(346,407)(347,408)(348,409)(349,410)
(350,406)(351,426)(352,427)(353,428)(354,429)(355,430)(356,450)(357,446)
(358,447)(359,448)(360,449)(361,444)(362,445)(363,441)(364,442)(365,443)
(366,438)(367,439)(368,440)(369,436)(370,437)(371,432)(372,433)(373,434)
(374,435)(375,431);;
s1 := (  1, 76)(  2, 82)(  3, 88)(  4, 94)(  5,100)(  6, 96)(  7, 77)(  8, 83)
(  9, 89)( 10, 95)( 11, 91)( 12, 97)( 13, 78)( 14, 84)( 15, 90)( 16, 86)
( 17, 92)( 18, 98)( 19, 79)( 20, 85)( 21, 81)( 22, 87)( 23, 93)( 24, 99)
( 25, 80)( 26,126)( 27,132)( 28,138)( 29,144)( 30,150)( 31,146)( 32,127)
( 33,133)( 34,139)( 35,145)( 36,141)( 37,147)( 38,128)( 39,134)( 40,140)
( 41,136)( 42,142)( 43,148)( 44,129)( 45,135)( 46,131)( 47,137)( 48,143)
( 49,149)( 50,130)( 51,101)( 52,107)( 53,113)( 54,119)( 55,125)( 56,121)
( 57,102)( 58,108)( 59,114)( 60,120)( 61,116)( 62,122)( 63,103)( 64,109)
( 65,115)( 66,111)( 67,117)( 68,123)( 69,104)( 70,110)( 71,106)( 72,112)
( 73,118)( 74,124)( 75,105)(152,157)(153,163)(154,169)(155,175)(156,171)
(159,164)(160,170)(161,166)(162,172)(168,173)(176,201)(177,207)(178,213)
(179,219)(180,225)(181,221)(182,202)(183,208)(184,214)(185,220)(186,216)
(187,222)(188,203)(189,209)(190,215)(191,211)(192,217)(193,223)(194,204)
(195,210)(196,206)(197,212)(198,218)(199,224)(200,205)(226,301)(227,307)
(228,313)(229,319)(230,325)(231,321)(232,302)(233,308)(234,314)(235,320)
(236,316)(237,322)(238,303)(239,309)(240,315)(241,311)(242,317)(243,323)
(244,304)(245,310)(246,306)(247,312)(248,318)(249,324)(250,305)(251,351)
(252,357)(253,363)(254,369)(255,375)(256,371)(257,352)(258,358)(259,364)
(260,370)(261,366)(262,372)(263,353)(264,359)(265,365)(266,361)(267,367)
(268,373)(269,354)(270,360)(271,356)(272,362)(273,368)(274,374)(275,355)
(276,326)(277,332)(278,338)(279,344)(280,350)(281,346)(282,327)(283,333)
(284,339)(285,345)(286,341)(287,347)(288,328)(289,334)(290,340)(291,336)
(292,342)(293,348)(294,329)(295,335)(296,331)(297,337)(298,343)(299,349)
(300,330)(377,382)(378,388)(379,394)(380,400)(381,396)(384,389)(385,395)
(386,391)(387,397)(393,398)(401,426)(402,432)(403,438)(404,444)(405,450)
(406,446)(407,427)(408,433)(409,439)(410,445)(411,441)(412,447)(413,428)
(414,434)(415,440)(416,436)(417,442)(418,448)(419,429)(420,435)(421,431)
(422,437)(423,443)(424,449)(425,430);;
s2 := (  1,252)(  2,251)(  3,255)(  4,254)(  5,253)(  6,258)(  7,257)(  8,256)
(  9,260)( 10,259)( 11,264)( 12,263)( 13,262)( 14,261)( 15,265)( 16,270)
( 17,269)( 18,268)( 19,267)( 20,266)( 21,271)( 22,275)( 23,274)( 24,273)
( 25,272)( 26,227)( 27,226)( 28,230)( 29,229)( 30,228)( 31,233)( 32,232)
( 33,231)( 34,235)( 35,234)( 36,239)( 37,238)( 38,237)( 39,236)( 40,240)
( 41,245)( 42,244)( 43,243)( 44,242)( 45,241)( 46,246)( 47,250)( 48,249)
( 49,248)( 50,247)( 51,277)( 52,276)( 53,280)( 54,279)( 55,278)( 56,283)
( 57,282)( 58,281)( 59,285)( 60,284)( 61,289)( 62,288)( 63,287)( 64,286)
( 65,290)( 66,295)( 67,294)( 68,293)( 69,292)( 70,291)( 71,296)( 72,300)
( 73,299)( 74,298)( 75,297)( 76,402)( 77,401)( 78,405)( 79,404)( 80,403)
( 81,408)( 82,407)( 83,406)( 84,410)( 85,409)( 86,414)( 87,413)( 88,412)
( 89,411)( 90,415)( 91,420)( 92,419)( 93,418)( 94,417)( 95,416)( 96,421)
( 97,425)( 98,424)( 99,423)(100,422)(101,377)(102,376)(103,380)(104,379)
(105,378)(106,383)(107,382)(108,381)(109,385)(110,384)(111,389)(112,388)
(113,387)(114,386)(115,390)(116,395)(117,394)(118,393)(119,392)(120,391)
(121,396)(122,400)(123,399)(124,398)(125,397)(126,427)(127,426)(128,430)
(129,429)(130,428)(131,433)(132,432)(133,431)(134,435)(135,434)(136,439)
(137,438)(138,437)(139,436)(140,440)(141,445)(142,444)(143,443)(144,442)
(145,441)(146,446)(147,450)(148,449)(149,448)(150,447)(151,327)(152,326)
(153,330)(154,329)(155,328)(156,333)(157,332)(158,331)(159,335)(160,334)
(161,339)(162,338)(163,337)(164,336)(165,340)(166,345)(167,344)(168,343)
(169,342)(170,341)(171,346)(172,350)(173,349)(174,348)(175,347)(176,302)
(177,301)(178,305)(179,304)(180,303)(181,308)(182,307)(183,306)(184,310)
(185,309)(186,314)(187,313)(188,312)(189,311)(190,315)(191,320)(192,319)
(193,318)(194,317)(195,316)(196,321)(197,325)(198,324)(199,323)(200,322)
(201,352)(202,351)(203,355)(204,354)(205,353)(206,358)(207,357)(208,356)
(209,360)(210,359)(211,364)(212,363)(213,362)(214,361)(215,365)(216,370)
(217,369)(218,368)(219,367)(220,366)(221,371)(222,375)(223,374)(224,373)
(225,372);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(450)!(  6, 25)(  7, 21)(  8, 22)(  9, 23)( 10, 24)( 11, 19)( 12, 20)
( 13, 16)( 14, 17)( 15, 18)( 31, 50)( 32, 46)( 33, 47)( 34, 48)( 35, 49)
( 36, 44)( 37, 45)( 38, 41)( 39, 42)( 40, 43)( 56, 75)( 57, 71)( 58, 72)
( 59, 73)( 60, 74)( 61, 69)( 62, 70)( 63, 66)( 64, 67)( 65, 68)( 76,151)
( 77,152)( 78,153)( 79,154)( 80,155)( 81,175)( 82,171)( 83,172)( 84,173)
( 85,174)( 86,169)( 87,170)( 88,166)( 89,167)( 90,168)( 91,163)( 92,164)
( 93,165)( 94,161)( 95,162)( 96,157)( 97,158)( 98,159)( 99,160)(100,156)
(101,176)(102,177)(103,178)(104,179)(105,180)(106,200)(107,196)(108,197)
(109,198)(110,199)(111,194)(112,195)(113,191)(114,192)(115,193)(116,188)
(117,189)(118,190)(119,186)(120,187)(121,182)(122,183)(123,184)(124,185)
(125,181)(126,201)(127,202)(128,203)(129,204)(130,205)(131,225)(132,221)
(133,222)(134,223)(135,224)(136,219)(137,220)(138,216)(139,217)(140,218)
(141,213)(142,214)(143,215)(144,211)(145,212)(146,207)(147,208)(148,209)
(149,210)(150,206)(231,250)(232,246)(233,247)(234,248)(235,249)(236,244)
(237,245)(238,241)(239,242)(240,243)(256,275)(257,271)(258,272)(259,273)
(260,274)(261,269)(262,270)(263,266)(264,267)(265,268)(281,300)(282,296)
(283,297)(284,298)(285,299)(286,294)(287,295)(288,291)(289,292)(290,293)
(301,376)(302,377)(303,378)(304,379)(305,380)(306,400)(307,396)(308,397)
(309,398)(310,399)(311,394)(312,395)(313,391)(314,392)(315,393)(316,388)
(317,389)(318,390)(319,386)(320,387)(321,382)(322,383)(323,384)(324,385)
(325,381)(326,401)(327,402)(328,403)(329,404)(330,405)(331,425)(332,421)
(333,422)(334,423)(335,424)(336,419)(337,420)(338,416)(339,417)(340,418)
(341,413)(342,414)(343,415)(344,411)(345,412)(346,407)(347,408)(348,409)
(349,410)(350,406)(351,426)(352,427)(353,428)(354,429)(355,430)(356,450)
(357,446)(358,447)(359,448)(360,449)(361,444)(362,445)(363,441)(364,442)
(365,443)(366,438)(367,439)(368,440)(369,436)(370,437)(371,432)(372,433)
(373,434)(374,435)(375,431);
s1 := Sym(450)!(  1, 76)(  2, 82)(  3, 88)(  4, 94)(  5,100)(  6, 96)(  7, 77)
(  8, 83)(  9, 89)( 10, 95)( 11, 91)( 12, 97)( 13, 78)( 14, 84)( 15, 90)
( 16, 86)( 17, 92)( 18, 98)( 19, 79)( 20, 85)( 21, 81)( 22, 87)( 23, 93)
( 24, 99)( 25, 80)( 26,126)( 27,132)( 28,138)( 29,144)( 30,150)( 31,146)
( 32,127)( 33,133)( 34,139)( 35,145)( 36,141)( 37,147)( 38,128)( 39,134)
( 40,140)( 41,136)( 42,142)( 43,148)( 44,129)( 45,135)( 46,131)( 47,137)
( 48,143)( 49,149)( 50,130)( 51,101)( 52,107)( 53,113)( 54,119)( 55,125)
( 56,121)( 57,102)( 58,108)( 59,114)( 60,120)( 61,116)( 62,122)( 63,103)
( 64,109)( 65,115)( 66,111)( 67,117)( 68,123)( 69,104)( 70,110)( 71,106)
( 72,112)( 73,118)( 74,124)( 75,105)(152,157)(153,163)(154,169)(155,175)
(156,171)(159,164)(160,170)(161,166)(162,172)(168,173)(176,201)(177,207)
(178,213)(179,219)(180,225)(181,221)(182,202)(183,208)(184,214)(185,220)
(186,216)(187,222)(188,203)(189,209)(190,215)(191,211)(192,217)(193,223)
(194,204)(195,210)(196,206)(197,212)(198,218)(199,224)(200,205)(226,301)
(227,307)(228,313)(229,319)(230,325)(231,321)(232,302)(233,308)(234,314)
(235,320)(236,316)(237,322)(238,303)(239,309)(240,315)(241,311)(242,317)
(243,323)(244,304)(245,310)(246,306)(247,312)(248,318)(249,324)(250,305)
(251,351)(252,357)(253,363)(254,369)(255,375)(256,371)(257,352)(258,358)
(259,364)(260,370)(261,366)(262,372)(263,353)(264,359)(265,365)(266,361)
(267,367)(268,373)(269,354)(270,360)(271,356)(272,362)(273,368)(274,374)
(275,355)(276,326)(277,332)(278,338)(279,344)(280,350)(281,346)(282,327)
(283,333)(284,339)(285,345)(286,341)(287,347)(288,328)(289,334)(290,340)
(291,336)(292,342)(293,348)(294,329)(295,335)(296,331)(297,337)(298,343)
(299,349)(300,330)(377,382)(378,388)(379,394)(380,400)(381,396)(384,389)
(385,395)(386,391)(387,397)(393,398)(401,426)(402,432)(403,438)(404,444)
(405,450)(406,446)(407,427)(408,433)(409,439)(410,445)(411,441)(412,447)
(413,428)(414,434)(415,440)(416,436)(417,442)(418,448)(419,429)(420,435)
(421,431)(422,437)(423,443)(424,449)(425,430);
s2 := Sym(450)!(  1,252)(  2,251)(  3,255)(  4,254)(  5,253)(  6,258)(  7,257)
(  8,256)(  9,260)( 10,259)( 11,264)( 12,263)( 13,262)( 14,261)( 15,265)
( 16,270)( 17,269)( 18,268)( 19,267)( 20,266)( 21,271)( 22,275)( 23,274)
( 24,273)( 25,272)( 26,227)( 27,226)( 28,230)( 29,229)( 30,228)( 31,233)
( 32,232)( 33,231)( 34,235)( 35,234)( 36,239)( 37,238)( 38,237)( 39,236)
( 40,240)( 41,245)( 42,244)( 43,243)( 44,242)( 45,241)( 46,246)( 47,250)
( 48,249)( 49,248)( 50,247)( 51,277)( 52,276)( 53,280)( 54,279)( 55,278)
( 56,283)( 57,282)( 58,281)( 59,285)( 60,284)( 61,289)( 62,288)( 63,287)
( 64,286)( 65,290)( 66,295)( 67,294)( 68,293)( 69,292)( 70,291)( 71,296)
( 72,300)( 73,299)( 74,298)( 75,297)( 76,402)( 77,401)( 78,405)( 79,404)
( 80,403)( 81,408)( 82,407)( 83,406)( 84,410)( 85,409)( 86,414)( 87,413)
( 88,412)( 89,411)( 90,415)( 91,420)( 92,419)( 93,418)( 94,417)( 95,416)
( 96,421)( 97,425)( 98,424)( 99,423)(100,422)(101,377)(102,376)(103,380)
(104,379)(105,378)(106,383)(107,382)(108,381)(109,385)(110,384)(111,389)
(112,388)(113,387)(114,386)(115,390)(116,395)(117,394)(118,393)(119,392)
(120,391)(121,396)(122,400)(123,399)(124,398)(125,397)(126,427)(127,426)
(128,430)(129,429)(130,428)(131,433)(132,432)(133,431)(134,435)(135,434)
(136,439)(137,438)(138,437)(139,436)(140,440)(141,445)(142,444)(143,443)
(144,442)(145,441)(146,446)(147,450)(148,449)(149,448)(150,447)(151,327)
(152,326)(153,330)(154,329)(155,328)(156,333)(157,332)(158,331)(159,335)
(160,334)(161,339)(162,338)(163,337)(164,336)(165,340)(166,345)(167,344)
(168,343)(169,342)(170,341)(171,346)(172,350)(173,349)(174,348)(175,347)
(176,302)(177,301)(178,305)(179,304)(180,303)(181,308)(182,307)(183,306)
(184,310)(185,309)(186,314)(187,313)(188,312)(189,311)(190,315)(191,320)
(192,319)(193,318)(194,317)(195,316)(196,321)(197,325)(198,324)(199,323)
(200,322)(201,352)(202,351)(203,355)(204,354)(205,353)(206,358)(207,357)
(208,356)(209,360)(210,359)(211,364)(212,363)(213,362)(214,361)(215,365)
(216,370)(217,369)(218,368)(219,367)(220,366)(221,371)(222,375)(223,374)
(224,373)(225,372);
poly := sub<Sym(450)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope