include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytopes of Type {6,6}
This page is part of the Atlas of Small Regular Polytopes
(See Other Polytopes of Rank 3)
There are 109 polytopes of this type in this atlas. They are :
- {6,6}*72a (SmallGroup(72,46))
- {6,6}*72b (SmallGroup(72,46))
- {6,6}*72c (SmallGroup(72,46))
- {6,6}*96 (SmallGroup(96,226))
- {6,6}*108 (SmallGroup(108,17))
- {6,6}*120 (SmallGroup(120,34))
- {6,6}*192a (SmallGroup(192,955))
- {6,6}*192b (SmallGroup(192,1485))
- {6,6}*216a (SmallGroup(216,102))
- {6,6}*216b (SmallGroup(216,102))
- {6,6}*216c (SmallGroup(216,102))
- {6,6}*216d (SmallGroup(216,162))
- {6,6}*240a (SmallGroup(240,189))
- {6,6}*240b (SmallGroup(240,189))
- {6,6}*240c (SmallGroup(240,189))
- {6,6}*288a (SmallGroup(288,1028))
- {6,6}*288b (SmallGroup(288,1028))
- {6,6}*324a (SmallGroup(324,39))
- {6,6}*324b (SmallGroup(324,39))
- {6,6}*336 (SmallGroup(336,208))
- {6,6}*384a (SmallGroup(384,5602))
- {6,6}*384b (SmallGroup(384,5602))
- {6,6}*384c (SmallGroup(384,17948))
- {6,6}*384d (SmallGroup(384,17949))
- {6,6}*384e (SmallGroup(384,17949))
- {6,6}*480 (SmallGroup(480,1186))
- {6,6}*576a (SmallGroup(576,8328))
- {6,6}*576b (SmallGroup(576,8328))
- {6,6}*576c (SmallGroup(576,8654))
- {6,6}*576d (SmallGroup(576,8654))
- {6,6}*576e (SmallGroup(576,8654))
- {6,6}*600a (SmallGroup(600,154))
- {6,6}*600b (SmallGroup(600,154))
- {6,6}*648a (SmallGroup(648,299))
- {6,6}*648b (SmallGroup(648,299))
- {6,6}*648c (SmallGroup(648,301))
- {6,6}*648d (SmallGroup(648,301))
- {6,6}*648e (SmallGroup(648,555))
- {6,6}*648f (SmallGroup(648,555))
- {6,6}*648g (SmallGroup(648,555))
- {6,6}*660 (SmallGroup(660,13))
- {6,6}*672a (SmallGroup(672,1254))
- {6,6}*672b (SmallGroup(672,1254))
- {6,6}*672c (SmallGroup(672,1254))
- {6,6}*720a (SmallGroup(720,763))
- {6,6}*720b (SmallGroup(720,767))
- {6,6}*720c (SmallGroup(720,767))
- {6,6}*720d (SmallGroup(720,767))
- {6,6}*768a (SmallGroup(768,1086051))
- {6,6}*768b (SmallGroup(768,1086329))
- {6,6}*768c (SmallGroup(768,1086333))
- {6,6}*768d (SmallGroup(768,1086333))
- {6,6}*768e (SmallGroup(768,1088539))
- {6,6}*768f (SmallGroup(768,1088555))
- {6,6}*864a (SmallGroup(864,4000))
- {6,6}*864b (SmallGroup(864,4000))
- {6,6}*864c (SmallGroup(864,4673))
- {6,6}*960 (SmallGroup(960,10877))
- {6,6}*972 (SmallGroup(972,101))
- {6,6}*1152a (SmallGroup(1152,155485))
- {6,6}*1152b (SmallGroup(1152,155485))
- {6,6}*1152c (SmallGroup(1152,155790))
- {6,6}*1152d (SmallGroup(1152,155790))
- {6,6}*1152e (SmallGroup(1152,155791))
- {6,6}*1152f (SmallGroup(1152,155791))
- {6,6}*1152g (SmallGroup(1152,157478))
- {6,6}*1152h (SmallGroup(1152,157478))
- {6,6}*1152i (SmallGroup(1152,157852))
- {6,6}*1152j (SmallGroup(1152,157852))
- {6,6}*1152k (SmallGroup(1152,157852))
- {6,6}*1176a (SmallGroup(1176,225))
- {6,6}*1176b (SmallGroup(1176,225))
- {6,6}*1296a (SmallGroup(1296,3490))
- {6,6}*1296b (SmallGroup(1296,3490))
- {6,6}*1320a (SmallGroup(1320,134))
- {6,6}*1320b (SmallGroup(1320,134))
- {6,6}*1320c (SmallGroup(1320,134))
- {6,6}*1320d (SmallGroup(1320,134))
- {6,6}*1320e (SmallGroup(1320,134))
- {6,6}*1320f (SmallGroup(1320,134))
- {6,6}*1320g (SmallGroup(1320,134))
- {6,6}*1344 (SmallGroup(1344,11684))
- {6,6}*1440a (SmallGroup(1440,5842))
- {6,6}*1440b (SmallGroup(1440,5842))
- {6,6}*1440c (SmallGroup(1440,5842))
- {6,6}*1440d (SmallGroup(1440,5849))
- {6,6}*1440e (SmallGroup(1440,5849))
- {6,6}*1440f (SmallGroup(1440,5849))
- {6,6}*1728a (SmallGroup(1728,30272))
- {6,6}*1728b (SmallGroup(1728,30272))
- {6,6}*1728c (SmallGroup(1728,46101))
- {6,6}*1728d (SmallGroup(1728,46101))
- {6,6}*1728e (SmallGroup(1728,46101))
- {6,6}*1728f (SmallGroup(1728,46313))
- {6,6}*1800a (SmallGroup(1800,575))
- {6,6}*1800b (SmallGroup(1800,575))
- {6,6}*1800c (SmallGroup(1800,586))
- {6,6}*1800d (SmallGroup(1800,586))
- {6,6}*1920 (SmallGroup(1920,240993))
- {6,6}*1944a (SmallGroup(1944,941))
- {6,6}*1944b (SmallGroup(1944,956))
- {6,6}*1944c (SmallGroup(1944,956))
- {6,6}*1944d (SmallGroup(1944,2342))
- {6,6}*1944e (SmallGroup(1944,2342))
- {6,6}*1944f (SmallGroup(1944,2342))
- {6,6}*1944g (SmallGroup(1944,2344))
- {6,6}*1944h (SmallGroup(1944,2344))
- {6,6}*1944i (SmallGroup(1944,2346))
- {6,6}*1944j (SmallGroup(1944,2346))