Polytope of Type {15,10,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,10,2,3}*1800
Tell me
if this polytope has a name.
Group : SmallGroup(1800,678)
Rank : 5
Schlafli Type : {15,10,2,3}
Number of vertices, edges, etc : 15, 75, 10, 3, 3
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {5,10,2,3}*600
5-fold quotients : {15,2,2,3}*360
15-fold quotients : {5,2,2,3}*120
25-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)
(14,18)(15,17)(26,51)(27,55)(28,54)(29,53)(30,52)(31,71)(32,75)(33,74)(34,73)
(35,72)(36,66)(37,70)(38,69)(39,68)(40,67)(41,61)(42,65)(43,64)(44,63)(45,62)
(46,56)(47,60)(48,59)(49,58)(50,57);;
s1 := ( 1,32)( 2,31)( 3,35)( 4,34)( 5,33)( 6,27)( 7,26)( 8,30)( 9,29)(10,28)
(11,47)(12,46)(13,50)(14,49)(15,48)(16,42)(17,41)(18,45)(19,44)(20,43)(21,37)
(22,36)(23,40)(24,39)(25,38)(51,57)(52,56)(53,60)(54,59)(55,58)(61,72)(62,71)
(63,75)(64,74)(65,73)(66,67)(68,70);;
s2 := ( 6,21)( 7,22)( 8,23)( 9,24)(10,25)(11,16)(12,17)(13,18)(14,19)(15,20)
(31,46)(32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45)(56,71)
(57,72)(58,73)(59,74)(60,75)(61,66)(62,67)(63,68)(64,69)(65,70);;
s3 := (77,78);;
s4 := (76,77);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(78)!( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)
(13,19)(14,18)(15,17)(26,51)(27,55)(28,54)(29,53)(30,52)(31,71)(32,75)(33,74)
(34,73)(35,72)(36,66)(37,70)(38,69)(39,68)(40,67)(41,61)(42,65)(43,64)(44,63)
(45,62)(46,56)(47,60)(48,59)(49,58)(50,57);
s1 := Sym(78)!( 1,32)( 2,31)( 3,35)( 4,34)( 5,33)( 6,27)( 7,26)( 8,30)( 9,29)
(10,28)(11,47)(12,46)(13,50)(14,49)(15,48)(16,42)(17,41)(18,45)(19,44)(20,43)
(21,37)(22,36)(23,40)(24,39)(25,38)(51,57)(52,56)(53,60)(54,59)(55,58)(61,72)
(62,71)(63,75)(64,74)(65,73)(66,67)(68,70);
s2 := Sym(78)!( 6,21)( 7,22)( 8,23)( 9,24)(10,25)(11,16)(12,17)(13,18)(14,19)
(15,20)(31,46)(32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45)
(56,71)(57,72)(58,73)(59,74)(60,75)(61,66)(62,67)(63,68)(64,69)(65,70);
s3 := Sym(78)!(77,78);
s4 := Sym(78)!(76,77);
poly := sub<Sym(78)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
Suggest a published reference
to this polytope