include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,10,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,10,15}*1800
if this polytope has a name.
Group : SmallGroup(1800,678)
Rank : 5
Schlafli Type : {3,2,10,15}
Number of vertices, edges, etc : 3, 3, 10, 75, 15
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,10,5}*600
5-fold quotients : {3,2,2,15}*360
15-fold quotients : {3,2,2,5}*120
25-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 9,24)(10,25)(11,26)(12,27)(13,28)(14,19)(15,20)(16,21)(17,22)(18,23)
(34,49)(35,50)(36,51)(37,52)(38,53)(39,44)(40,45)(41,46)(42,47)(43,48)(59,74)
(60,75)(61,76)(62,77)(63,78)(64,69)(65,70)(66,71)(67,72)(68,73);;
s3 := ( 4, 9)( 5,13)( 6,12)( 7,11)( 8,10)(14,24)(15,28)(16,27)(17,26)(18,25)
(20,23)(21,22)(29,59)(30,63)(31,62)(32,61)(33,60)(34,54)(35,58)(36,57)(37,56)
(38,55)(39,74)(40,78)(41,77)(42,76)(43,75)(44,69)(45,73)(46,72)(47,71)(48,70)
(49,64)(50,68)(51,67)(52,66)(53,65);;
s4 := ( 4,30)( 5,29)( 6,33)( 7,32)( 8,31)( 9,50)(10,49)(11,53)(12,52)(13,51)
(14,45)(15,44)(16,48)(17,47)(18,46)(19,40)(20,39)(21,43)(22,42)(23,41)(24,35)
(25,34)(26,38)(27,37)(28,36)(54,55)(56,58)(59,75)(60,74)(61,78)(62,77)(63,76)
(64,70)(65,69)(66,73)(67,72)(68,71);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(78)!(2,3);
s1 := Sym(78)!(1,2);
s2 := Sym(78)!( 9,24)(10,25)(11,26)(12,27)(13,28)(14,19)(15,20)(16,21)(17,22)
(18,23)(34,49)(35,50)(36,51)(37,52)(38,53)(39,44)(40,45)(41,46)(42,47)(43,48)
(59,74)(60,75)(61,76)(62,77)(63,78)(64,69)(65,70)(66,71)(67,72)(68,73);
s3 := Sym(78)!( 4, 9)( 5,13)( 6,12)( 7,11)( 8,10)(14,24)(15,28)(16,27)(17,26)
(18,25)(20,23)(21,22)(29,59)(30,63)(31,62)(32,61)(33,60)(34,54)(35,58)(36,57)
(37,56)(38,55)(39,74)(40,78)(41,77)(42,76)(43,75)(44,69)(45,73)(46,72)(47,71)
(48,70)(49,64)(50,68)(51,67)(52,66)(53,65);
s4 := Sym(78)!( 4,30)( 5,29)( 6,33)( 7,32)( 8,31)( 9,50)(10,49)(11,53)(12,52)
(13,51)(14,45)(15,44)(16,48)(17,47)(18,46)(19,40)(20,39)(21,43)(22,42)(23,41)
(24,35)(25,34)(26,38)(27,37)(28,36)(54,55)(56,58)(59,75)(60,74)(61,78)(62,77)
(63,76)(64,70)(65,69)(66,73)(67,72)(68,71);
poly := sub<Sym(78)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope