include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {454,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {454,2}*1816
if this polytope has a name.
Group : SmallGroup(1816,12)
Rank : 3
Schlafli Type : {454,2}
Number of vertices, edges, etc : 454, 454, 2
Order of s0s1s2 : 454
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {227,2}*908
227-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,227)( 3,226)( 4,225)( 5,224)( 6,223)( 7,222)( 8,221)( 9,220)
( 10,219)( 11,218)( 12,217)( 13,216)( 14,215)( 15,214)( 16,213)( 17,212)
( 18,211)( 19,210)( 20,209)( 21,208)( 22,207)( 23,206)( 24,205)( 25,204)
( 26,203)( 27,202)( 28,201)( 29,200)( 30,199)( 31,198)( 32,197)( 33,196)
( 34,195)( 35,194)( 36,193)( 37,192)( 38,191)( 39,190)( 40,189)( 41,188)
( 42,187)( 43,186)( 44,185)( 45,184)( 46,183)( 47,182)( 48,181)( 49,180)
( 50,179)( 51,178)( 52,177)( 53,176)( 54,175)( 55,174)( 56,173)( 57,172)
( 58,171)( 59,170)( 60,169)( 61,168)( 62,167)( 63,166)( 64,165)( 65,164)
( 66,163)( 67,162)( 68,161)( 69,160)( 70,159)( 71,158)( 72,157)( 73,156)
( 74,155)( 75,154)( 76,153)( 77,152)( 78,151)( 79,150)( 80,149)( 81,148)
( 82,147)( 83,146)( 84,145)( 85,144)( 86,143)( 87,142)( 88,141)( 89,140)
( 90,139)( 91,138)( 92,137)( 93,136)( 94,135)( 95,134)( 96,133)( 97,132)
( 98,131)( 99,130)(100,129)(101,128)(102,127)(103,126)(104,125)(105,124)
(106,123)(107,122)(108,121)(109,120)(110,119)(111,118)(112,117)(113,116)
(114,115)(229,454)(230,453)(231,452)(232,451)(233,450)(234,449)(235,448)
(236,447)(237,446)(238,445)(239,444)(240,443)(241,442)(242,441)(243,440)
(244,439)(245,438)(246,437)(247,436)(248,435)(249,434)(250,433)(251,432)
(252,431)(253,430)(254,429)(255,428)(256,427)(257,426)(258,425)(259,424)
(260,423)(261,422)(262,421)(263,420)(264,419)(265,418)(266,417)(267,416)
(268,415)(269,414)(270,413)(271,412)(272,411)(273,410)(274,409)(275,408)
(276,407)(277,406)(278,405)(279,404)(280,403)(281,402)(282,401)(283,400)
(284,399)(285,398)(286,397)(287,396)(288,395)(289,394)(290,393)(291,392)
(292,391)(293,390)(294,389)(295,388)(296,387)(297,386)(298,385)(299,384)
(300,383)(301,382)(302,381)(303,380)(304,379)(305,378)(306,377)(307,376)
(308,375)(309,374)(310,373)(311,372)(312,371)(313,370)(314,369)(315,368)
(316,367)(317,366)(318,365)(319,364)(320,363)(321,362)(322,361)(323,360)
(324,359)(325,358)(326,357)(327,356)(328,355)(329,354)(330,353)(331,352)
(332,351)(333,350)(334,349)(335,348)(336,347)(337,346)(338,345)(339,344)
(340,343)(341,342);;
s1 := ( 1,229)( 2,228)( 3,454)( 4,453)( 5,452)( 6,451)( 7,450)( 8,449)
( 9,448)( 10,447)( 11,446)( 12,445)( 13,444)( 14,443)( 15,442)( 16,441)
( 17,440)( 18,439)( 19,438)( 20,437)( 21,436)( 22,435)( 23,434)( 24,433)
( 25,432)( 26,431)( 27,430)( 28,429)( 29,428)( 30,427)( 31,426)( 32,425)
( 33,424)( 34,423)( 35,422)( 36,421)( 37,420)( 38,419)( 39,418)( 40,417)
( 41,416)( 42,415)( 43,414)( 44,413)( 45,412)( 46,411)( 47,410)( 48,409)
( 49,408)( 50,407)( 51,406)( 52,405)( 53,404)( 54,403)( 55,402)( 56,401)
( 57,400)( 58,399)( 59,398)( 60,397)( 61,396)( 62,395)( 63,394)( 64,393)
( 65,392)( 66,391)( 67,390)( 68,389)( 69,388)( 70,387)( 71,386)( 72,385)
( 73,384)( 74,383)( 75,382)( 76,381)( 77,380)( 78,379)( 79,378)( 80,377)
( 81,376)( 82,375)( 83,374)( 84,373)( 85,372)( 86,371)( 87,370)( 88,369)
( 89,368)( 90,367)( 91,366)( 92,365)( 93,364)( 94,363)( 95,362)( 96,361)
( 97,360)( 98,359)( 99,358)(100,357)(101,356)(102,355)(103,354)(104,353)
(105,352)(106,351)(107,350)(108,349)(109,348)(110,347)(111,346)(112,345)
(113,344)(114,343)(115,342)(116,341)(117,340)(118,339)(119,338)(120,337)
(121,336)(122,335)(123,334)(124,333)(125,332)(126,331)(127,330)(128,329)
(129,328)(130,327)(131,326)(132,325)(133,324)(134,323)(135,322)(136,321)
(137,320)(138,319)(139,318)(140,317)(141,316)(142,315)(143,314)(144,313)
(145,312)(146,311)(147,310)(148,309)(149,308)(150,307)(151,306)(152,305)
(153,304)(154,303)(155,302)(156,301)(157,300)(158,299)(159,298)(160,297)
(161,296)(162,295)(163,294)(164,293)(165,292)(166,291)(167,290)(168,289)
(169,288)(170,287)(171,286)(172,285)(173,284)(174,283)(175,282)(176,281)
(177,280)(178,279)(179,278)(180,277)(181,276)(182,275)(183,274)(184,273)
(185,272)(186,271)(187,270)(188,269)(189,268)(190,267)(191,266)(192,265)
(193,264)(194,263)(195,262)(196,261)(197,260)(198,259)(199,258)(200,257)
(201,256)(202,255)(203,254)(204,253)(205,252)(206,251)(207,250)(208,249)
(209,248)(210,247)(211,246)(212,245)(213,244)(214,243)(215,242)(216,241)
(217,240)(218,239)(219,238)(220,237)(221,236)(222,235)(223,234)(224,233)
(225,232)(226,231)(227,230);;
s2 := (455,456);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(456)!( 2,227)( 3,226)( 4,225)( 5,224)( 6,223)( 7,222)( 8,221)
( 9,220)( 10,219)( 11,218)( 12,217)( 13,216)( 14,215)( 15,214)( 16,213)
( 17,212)( 18,211)( 19,210)( 20,209)( 21,208)( 22,207)( 23,206)( 24,205)
( 25,204)( 26,203)( 27,202)( 28,201)( 29,200)( 30,199)( 31,198)( 32,197)
( 33,196)( 34,195)( 35,194)( 36,193)( 37,192)( 38,191)( 39,190)( 40,189)
( 41,188)( 42,187)( 43,186)( 44,185)( 45,184)( 46,183)( 47,182)( 48,181)
( 49,180)( 50,179)( 51,178)( 52,177)( 53,176)( 54,175)( 55,174)( 56,173)
( 57,172)( 58,171)( 59,170)( 60,169)( 61,168)( 62,167)( 63,166)( 64,165)
( 65,164)( 66,163)( 67,162)( 68,161)( 69,160)( 70,159)( 71,158)( 72,157)
( 73,156)( 74,155)( 75,154)( 76,153)( 77,152)( 78,151)( 79,150)( 80,149)
( 81,148)( 82,147)( 83,146)( 84,145)( 85,144)( 86,143)( 87,142)( 88,141)
( 89,140)( 90,139)( 91,138)( 92,137)( 93,136)( 94,135)( 95,134)( 96,133)
( 97,132)( 98,131)( 99,130)(100,129)(101,128)(102,127)(103,126)(104,125)
(105,124)(106,123)(107,122)(108,121)(109,120)(110,119)(111,118)(112,117)
(113,116)(114,115)(229,454)(230,453)(231,452)(232,451)(233,450)(234,449)
(235,448)(236,447)(237,446)(238,445)(239,444)(240,443)(241,442)(242,441)
(243,440)(244,439)(245,438)(246,437)(247,436)(248,435)(249,434)(250,433)
(251,432)(252,431)(253,430)(254,429)(255,428)(256,427)(257,426)(258,425)
(259,424)(260,423)(261,422)(262,421)(263,420)(264,419)(265,418)(266,417)
(267,416)(268,415)(269,414)(270,413)(271,412)(272,411)(273,410)(274,409)
(275,408)(276,407)(277,406)(278,405)(279,404)(280,403)(281,402)(282,401)
(283,400)(284,399)(285,398)(286,397)(287,396)(288,395)(289,394)(290,393)
(291,392)(292,391)(293,390)(294,389)(295,388)(296,387)(297,386)(298,385)
(299,384)(300,383)(301,382)(302,381)(303,380)(304,379)(305,378)(306,377)
(307,376)(308,375)(309,374)(310,373)(311,372)(312,371)(313,370)(314,369)
(315,368)(316,367)(317,366)(318,365)(319,364)(320,363)(321,362)(322,361)
(323,360)(324,359)(325,358)(326,357)(327,356)(328,355)(329,354)(330,353)
(331,352)(332,351)(333,350)(334,349)(335,348)(336,347)(337,346)(338,345)
(339,344)(340,343)(341,342);
s1 := Sym(456)!( 1,229)( 2,228)( 3,454)( 4,453)( 5,452)( 6,451)( 7,450)
( 8,449)( 9,448)( 10,447)( 11,446)( 12,445)( 13,444)( 14,443)( 15,442)
( 16,441)( 17,440)( 18,439)( 19,438)( 20,437)( 21,436)( 22,435)( 23,434)
( 24,433)( 25,432)( 26,431)( 27,430)( 28,429)( 29,428)( 30,427)( 31,426)
( 32,425)( 33,424)( 34,423)( 35,422)( 36,421)( 37,420)( 38,419)( 39,418)
( 40,417)( 41,416)( 42,415)( 43,414)( 44,413)( 45,412)( 46,411)( 47,410)
( 48,409)( 49,408)( 50,407)( 51,406)( 52,405)( 53,404)( 54,403)( 55,402)
( 56,401)( 57,400)( 58,399)( 59,398)( 60,397)( 61,396)( 62,395)( 63,394)
( 64,393)( 65,392)( 66,391)( 67,390)( 68,389)( 69,388)( 70,387)( 71,386)
( 72,385)( 73,384)( 74,383)( 75,382)( 76,381)( 77,380)( 78,379)( 79,378)
( 80,377)( 81,376)( 82,375)( 83,374)( 84,373)( 85,372)( 86,371)( 87,370)
( 88,369)( 89,368)( 90,367)( 91,366)( 92,365)( 93,364)( 94,363)( 95,362)
( 96,361)( 97,360)( 98,359)( 99,358)(100,357)(101,356)(102,355)(103,354)
(104,353)(105,352)(106,351)(107,350)(108,349)(109,348)(110,347)(111,346)
(112,345)(113,344)(114,343)(115,342)(116,341)(117,340)(118,339)(119,338)
(120,337)(121,336)(122,335)(123,334)(124,333)(125,332)(126,331)(127,330)
(128,329)(129,328)(130,327)(131,326)(132,325)(133,324)(134,323)(135,322)
(136,321)(137,320)(138,319)(139,318)(140,317)(141,316)(142,315)(143,314)
(144,313)(145,312)(146,311)(147,310)(148,309)(149,308)(150,307)(151,306)
(152,305)(153,304)(154,303)(155,302)(156,301)(157,300)(158,299)(159,298)
(160,297)(161,296)(162,295)(163,294)(164,293)(165,292)(166,291)(167,290)
(168,289)(169,288)(170,287)(171,286)(172,285)(173,284)(174,283)(175,282)
(176,281)(177,280)(178,279)(179,278)(180,277)(181,276)(182,275)(183,274)
(184,273)(185,272)(186,271)(187,270)(188,269)(189,268)(190,267)(191,266)
(192,265)(193,264)(194,263)(195,262)(196,261)(197,260)(198,259)(199,258)
(200,257)(201,256)(202,255)(203,254)(204,253)(205,252)(206,251)(207,250)
(208,249)(209,248)(210,247)(211,246)(212,245)(213,244)(214,243)(215,242)
(216,241)(217,240)(218,239)(219,238)(220,237)(221,236)(222,235)(223,234)
(224,233)(225,232)(226,231)(227,230);
s2 := Sym(456)!(455,456);
poly := sub<Sym(456)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope