include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {456,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {456,2}*1824
if this polytope has a name.
Group : SmallGroup(1824,968)
Rank : 3
Schlafli Type : {456,2}
Number of vertices, edges, etc : 456, 456, 2
Order of s0s1s2 : 456
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {228,2}*912
3-fold quotients : {152,2}*608
4-fold quotients : {114,2}*456
6-fold quotients : {76,2}*304
8-fold quotients : {57,2}*228
12-fold quotients : {38,2}*152
19-fold quotients : {24,2}*96
24-fold quotients : {19,2}*76
38-fold quotients : {12,2}*48
57-fold quotients : {8,2}*32
76-fold quotients : {6,2}*24
114-fold quotients : {4,2}*16
152-fold quotients : {3,2}*12
228-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 19)( 3, 18)( 4, 17)( 5, 16)( 6, 15)( 7, 14)( 8, 13)( 9, 12)
( 10, 11)( 20, 39)( 21, 57)( 22, 56)( 23, 55)( 24, 54)( 25, 53)( 26, 52)
( 27, 51)( 28, 50)( 29, 49)( 30, 48)( 31, 47)( 32, 46)( 33, 45)( 34, 44)
( 35, 43)( 36, 42)( 37, 41)( 38, 40)( 59, 76)( 60, 75)( 61, 74)( 62, 73)
( 63, 72)( 64, 71)( 65, 70)( 66, 69)( 67, 68)( 77, 96)( 78,114)( 79,113)
( 80,112)( 81,111)( 82,110)( 83,109)( 84,108)( 85,107)( 86,106)( 87,105)
( 88,104)( 89,103)( 90,102)( 91,101)( 92,100)( 93, 99)( 94, 98)( 95, 97)
(115,172)(116,190)(117,189)(118,188)(119,187)(120,186)(121,185)(122,184)
(123,183)(124,182)(125,181)(126,180)(127,179)(128,178)(129,177)(130,176)
(131,175)(132,174)(133,173)(134,210)(135,228)(136,227)(137,226)(138,225)
(139,224)(140,223)(141,222)(142,221)(143,220)(144,219)(145,218)(146,217)
(147,216)(148,215)(149,214)(150,213)(151,212)(152,211)(153,191)(154,209)
(155,208)(156,207)(157,206)(158,205)(159,204)(160,203)(161,202)(162,201)
(163,200)(164,199)(165,198)(166,197)(167,196)(168,195)(169,194)(170,193)
(171,192)(229,343)(230,361)(231,360)(232,359)(233,358)(234,357)(235,356)
(236,355)(237,354)(238,353)(239,352)(240,351)(241,350)(242,349)(243,348)
(244,347)(245,346)(246,345)(247,344)(248,381)(249,399)(250,398)(251,397)
(252,396)(253,395)(254,394)(255,393)(256,392)(257,391)(258,390)(259,389)
(260,388)(261,387)(262,386)(263,385)(264,384)(265,383)(266,382)(267,362)
(268,380)(269,379)(270,378)(271,377)(272,376)(273,375)(274,374)(275,373)
(276,372)(277,371)(278,370)(279,369)(280,368)(281,367)(282,366)(283,365)
(284,364)(285,363)(286,400)(287,418)(288,417)(289,416)(290,415)(291,414)
(292,413)(293,412)(294,411)(295,410)(296,409)(297,408)(298,407)(299,406)
(300,405)(301,404)(302,403)(303,402)(304,401)(305,438)(306,456)(307,455)
(308,454)(309,453)(310,452)(311,451)(312,450)(313,449)(314,448)(315,447)
(316,446)(317,445)(318,444)(319,443)(320,442)(321,441)(322,440)(323,439)
(324,419)(325,437)(326,436)(327,435)(328,434)(329,433)(330,432)(331,431)
(332,430)(333,429)(334,428)(335,427)(336,426)(337,425)(338,424)(339,423)
(340,422)(341,421)(342,420);;
s1 := ( 1,249)( 2,248)( 3,266)( 4,265)( 5,264)( 6,263)( 7,262)( 8,261)
( 9,260)( 10,259)( 11,258)( 12,257)( 13,256)( 14,255)( 15,254)( 16,253)
( 17,252)( 18,251)( 19,250)( 20,230)( 21,229)( 22,247)( 23,246)( 24,245)
( 25,244)( 26,243)( 27,242)( 28,241)( 29,240)( 30,239)( 31,238)( 32,237)
( 33,236)( 34,235)( 35,234)( 36,233)( 37,232)( 38,231)( 39,268)( 40,267)
( 41,285)( 42,284)( 43,283)( 44,282)( 45,281)( 46,280)( 47,279)( 48,278)
( 49,277)( 50,276)( 51,275)( 52,274)( 53,273)( 54,272)( 55,271)( 56,270)
( 57,269)( 58,306)( 59,305)( 60,323)( 61,322)( 62,321)( 63,320)( 64,319)
( 65,318)( 66,317)( 67,316)( 68,315)( 69,314)( 70,313)( 71,312)( 72,311)
( 73,310)( 74,309)( 75,308)( 76,307)( 77,287)( 78,286)( 79,304)( 80,303)
( 81,302)( 82,301)( 83,300)( 84,299)( 85,298)( 86,297)( 87,296)( 88,295)
( 89,294)( 90,293)( 91,292)( 92,291)( 93,290)( 94,289)( 95,288)( 96,325)
( 97,324)( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)(104,336)
(105,335)(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)(112,328)
(113,327)(114,326)(115,420)(116,419)(117,437)(118,436)(119,435)(120,434)
(121,433)(122,432)(123,431)(124,430)(125,429)(126,428)(127,427)(128,426)
(129,425)(130,424)(131,423)(132,422)(133,421)(134,401)(135,400)(136,418)
(137,417)(138,416)(139,415)(140,414)(141,413)(142,412)(143,411)(144,410)
(145,409)(146,408)(147,407)(148,406)(149,405)(150,404)(151,403)(152,402)
(153,439)(154,438)(155,456)(156,455)(157,454)(158,453)(159,452)(160,451)
(161,450)(162,449)(163,448)(164,447)(165,446)(166,445)(167,444)(168,443)
(169,442)(170,441)(171,440)(172,363)(173,362)(174,380)(175,379)(176,378)
(177,377)(178,376)(179,375)(180,374)(181,373)(182,372)(183,371)(184,370)
(185,369)(186,368)(187,367)(188,366)(189,365)(190,364)(191,344)(192,343)
(193,361)(194,360)(195,359)(196,358)(197,357)(198,356)(199,355)(200,354)
(201,353)(202,352)(203,351)(204,350)(205,349)(206,348)(207,347)(208,346)
(209,345)(210,382)(211,381)(212,399)(213,398)(214,397)(215,396)(216,395)
(217,394)(218,393)(219,392)(220,391)(221,390)(222,389)(223,388)(224,387)
(225,386)(226,385)(227,384)(228,383);;
s2 := (457,458);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(458)!( 2, 19)( 3, 18)( 4, 17)( 5, 16)( 6, 15)( 7, 14)( 8, 13)
( 9, 12)( 10, 11)( 20, 39)( 21, 57)( 22, 56)( 23, 55)( 24, 54)( 25, 53)
( 26, 52)( 27, 51)( 28, 50)( 29, 49)( 30, 48)( 31, 47)( 32, 46)( 33, 45)
( 34, 44)( 35, 43)( 36, 42)( 37, 41)( 38, 40)( 59, 76)( 60, 75)( 61, 74)
( 62, 73)( 63, 72)( 64, 71)( 65, 70)( 66, 69)( 67, 68)( 77, 96)( 78,114)
( 79,113)( 80,112)( 81,111)( 82,110)( 83,109)( 84,108)( 85,107)( 86,106)
( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)( 92,100)( 93, 99)( 94, 98)
( 95, 97)(115,172)(116,190)(117,189)(118,188)(119,187)(120,186)(121,185)
(122,184)(123,183)(124,182)(125,181)(126,180)(127,179)(128,178)(129,177)
(130,176)(131,175)(132,174)(133,173)(134,210)(135,228)(136,227)(137,226)
(138,225)(139,224)(140,223)(141,222)(142,221)(143,220)(144,219)(145,218)
(146,217)(147,216)(148,215)(149,214)(150,213)(151,212)(152,211)(153,191)
(154,209)(155,208)(156,207)(157,206)(158,205)(159,204)(160,203)(161,202)
(162,201)(163,200)(164,199)(165,198)(166,197)(167,196)(168,195)(169,194)
(170,193)(171,192)(229,343)(230,361)(231,360)(232,359)(233,358)(234,357)
(235,356)(236,355)(237,354)(238,353)(239,352)(240,351)(241,350)(242,349)
(243,348)(244,347)(245,346)(246,345)(247,344)(248,381)(249,399)(250,398)
(251,397)(252,396)(253,395)(254,394)(255,393)(256,392)(257,391)(258,390)
(259,389)(260,388)(261,387)(262,386)(263,385)(264,384)(265,383)(266,382)
(267,362)(268,380)(269,379)(270,378)(271,377)(272,376)(273,375)(274,374)
(275,373)(276,372)(277,371)(278,370)(279,369)(280,368)(281,367)(282,366)
(283,365)(284,364)(285,363)(286,400)(287,418)(288,417)(289,416)(290,415)
(291,414)(292,413)(293,412)(294,411)(295,410)(296,409)(297,408)(298,407)
(299,406)(300,405)(301,404)(302,403)(303,402)(304,401)(305,438)(306,456)
(307,455)(308,454)(309,453)(310,452)(311,451)(312,450)(313,449)(314,448)
(315,447)(316,446)(317,445)(318,444)(319,443)(320,442)(321,441)(322,440)
(323,439)(324,419)(325,437)(326,436)(327,435)(328,434)(329,433)(330,432)
(331,431)(332,430)(333,429)(334,428)(335,427)(336,426)(337,425)(338,424)
(339,423)(340,422)(341,421)(342,420);
s1 := Sym(458)!( 1,249)( 2,248)( 3,266)( 4,265)( 5,264)( 6,263)( 7,262)
( 8,261)( 9,260)( 10,259)( 11,258)( 12,257)( 13,256)( 14,255)( 15,254)
( 16,253)( 17,252)( 18,251)( 19,250)( 20,230)( 21,229)( 22,247)( 23,246)
( 24,245)( 25,244)( 26,243)( 27,242)( 28,241)( 29,240)( 30,239)( 31,238)
( 32,237)( 33,236)( 34,235)( 35,234)( 36,233)( 37,232)( 38,231)( 39,268)
( 40,267)( 41,285)( 42,284)( 43,283)( 44,282)( 45,281)( 46,280)( 47,279)
( 48,278)( 49,277)( 50,276)( 51,275)( 52,274)( 53,273)( 54,272)( 55,271)
( 56,270)( 57,269)( 58,306)( 59,305)( 60,323)( 61,322)( 62,321)( 63,320)
( 64,319)( 65,318)( 66,317)( 67,316)( 68,315)( 69,314)( 70,313)( 71,312)
( 72,311)( 73,310)( 74,309)( 75,308)( 76,307)( 77,287)( 78,286)( 79,304)
( 80,303)( 81,302)( 82,301)( 83,300)( 84,299)( 85,298)( 86,297)( 87,296)
( 88,295)( 89,294)( 90,293)( 91,292)( 92,291)( 93,290)( 94,289)( 95,288)
( 96,325)( 97,324)( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)
(104,336)(105,335)(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)
(112,328)(113,327)(114,326)(115,420)(116,419)(117,437)(118,436)(119,435)
(120,434)(121,433)(122,432)(123,431)(124,430)(125,429)(126,428)(127,427)
(128,426)(129,425)(130,424)(131,423)(132,422)(133,421)(134,401)(135,400)
(136,418)(137,417)(138,416)(139,415)(140,414)(141,413)(142,412)(143,411)
(144,410)(145,409)(146,408)(147,407)(148,406)(149,405)(150,404)(151,403)
(152,402)(153,439)(154,438)(155,456)(156,455)(157,454)(158,453)(159,452)
(160,451)(161,450)(162,449)(163,448)(164,447)(165,446)(166,445)(167,444)
(168,443)(169,442)(170,441)(171,440)(172,363)(173,362)(174,380)(175,379)
(176,378)(177,377)(178,376)(179,375)(180,374)(181,373)(182,372)(183,371)
(184,370)(185,369)(186,368)(187,367)(188,366)(189,365)(190,364)(191,344)
(192,343)(193,361)(194,360)(195,359)(196,358)(197,357)(198,356)(199,355)
(200,354)(201,353)(202,352)(203,351)(204,350)(205,349)(206,348)(207,347)
(208,346)(209,345)(210,382)(211,381)(212,399)(213,398)(214,397)(215,396)
(216,395)(217,394)(218,393)(219,392)(220,391)(221,390)(222,389)(223,388)
(224,387)(225,386)(226,385)(227,384)(228,383);
s2 := Sym(458)!(457,458);
poly := sub<Sym(458)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope