include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {51,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {51,6}*1836
if this polytope has a name.
Group : SmallGroup(1836,53)
Rank : 3
Schlafli Type : {51,6}
Number of vertices, edges, etc : 153, 459, 18
Order of s0s1s2 : 102
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {51,6}*612
9-fold quotients : {51,2}*204
17-fold quotients : {3,6}*108
27-fold quotients : {17,2}*68
51-fold quotients : {3,6}*36
153-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 49)( 5, 50)( 6, 51)( 7, 46)( 8, 47)( 9, 48)( 10, 43)( 11, 44)
( 12, 45)( 13, 40)( 14, 41)( 15, 42)( 16, 37)( 17, 38)( 18, 39)( 19, 34)
( 20, 35)( 21, 36)( 22, 31)( 23, 32)( 24, 33)( 25, 28)( 26, 29)( 27, 30)
( 52,103)( 53,104)( 54,105)( 55,151)( 56,152)( 57,153)( 58,148)( 59,149)
( 60,150)( 61,145)( 62,146)( 63,147)( 64,142)( 65,143)( 66,144)( 67,139)
( 68,140)( 69,141)( 70,136)( 71,137)( 72,138)( 73,133)( 74,134)( 75,135)
( 76,130)( 77,131)( 78,132)( 79,127)( 80,128)( 81,129)( 82,124)( 83,125)
( 84,126)( 85,121)( 86,122)( 87,123)( 88,118)( 89,119)( 90,120)( 91,115)
( 92,116)( 93,117)( 94,112)( 95,113)( 96,114)( 97,109)( 98,110)( 99,111)
(100,106)(101,107)(102,108);;
s1 := ( 1, 56)( 2, 57)( 3, 55)( 4, 53)( 5, 54)( 6, 52)( 7,101)( 8,102)
( 9,100)( 10, 98)( 11, 99)( 12, 97)( 13, 95)( 14, 96)( 15, 94)( 16, 92)
( 17, 93)( 18, 91)( 19, 89)( 20, 90)( 21, 88)( 22, 86)( 23, 87)( 24, 85)
( 25, 83)( 26, 84)( 27, 82)( 28, 80)( 29, 81)( 30, 79)( 31, 77)( 32, 78)
( 33, 76)( 34, 74)( 35, 75)( 36, 73)( 37, 71)( 38, 72)( 39, 70)( 40, 68)
( 41, 69)( 42, 67)( 43, 65)( 44, 66)( 45, 64)( 46, 62)( 47, 63)( 48, 61)
( 49, 59)( 50, 60)( 51, 58)(103,106)(104,107)(105,108)(109,151)(110,152)
(111,153)(112,148)(113,149)(114,150)(115,145)(116,146)(117,147)(118,142)
(119,143)(120,144)(121,139)(122,140)(123,141)(124,136)(125,137)(126,138)
(127,133)(128,134)(129,135);;
s2 := ( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)( 47, 48)
( 50, 51)( 52,103)( 53,105)( 54,104)( 55,106)( 56,108)( 57,107)( 58,109)
( 59,111)( 60,110)( 61,112)( 62,114)( 63,113)( 64,115)( 65,117)( 66,116)
( 67,118)( 68,120)( 69,119)( 70,121)( 71,123)( 72,122)( 73,124)( 74,126)
( 75,125)( 76,127)( 77,129)( 78,128)( 79,130)( 80,132)( 81,131)( 82,133)
( 83,135)( 84,134)( 85,136)( 86,138)( 87,137)( 88,139)( 89,141)( 90,140)
( 91,142)( 92,144)( 93,143)( 94,145)( 95,147)( 96,146)( 97,148)( 98,150)
( 99,149)(100,151)(101,153)(102,152);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(153)!( 4, 49)( 5, 50)( 6, 51)( 7, 46)( 8, 47)( 9, 48)( 10, 43)
( 11, 44)( 12, 45)( 13, 40)( 14, 41)( 15, 42)( 16, 37)( 17, 38)( 18, 39)
( 19, 34)( 20, 35)( 21, 36)( 22, 31)( 23, 32)( 24, 33)( 25, 28)( 26, 29)
( 27, 30)( 52,103)( 53,104)( 54,105)( 55,151)( 56,152)( 57,153)( 58,148)
( 59,149)( 60,150)( 61,145)( 62,146)( 63,147)( 64,142)( 65,143)( 66,144)
( 67,139)( 68,140)( 69,141)( 70,136)( 71,137)( 72,138)( 73,133)( 74,134)
( 75,135)( 76,130)( 77,131)( 78,132)( 79,127)( 80,128)( 81,129)( 82,124)
( 83,125)( 84,126)( 85,121)( 86,122)( 87,123)( 88,118)( 89,119)( 90,120)
( 91,115)( 92,116)( 93,117)( 94,112)( 95,113)( 96,114)( 97,109)( 98,110)
( 99,111)(100,106)(101,107)(102,108);
s1 := Sym(153)!( 1, 56)( 2, 57)( 3, 55)( 4, 53)( 5, 54)( 6, 52)( 7,101)
( 8,102)( 9,100)( 10, 98)( 11, 99)( 12, 97)( 13, 95)( 14, 96)( 15, 94)
( 16, 92)( 17, 93)( 18, 91)( 19, 89)( 20, 90)( 21, 88)( 22, 86)( 23, 87)
( 24, 85)( 25, 83)( 26, 84)( 27, 82)( 28, 80)( 29, 81)( 30, 79)( 31, 77)
( 32, 78)( 33, 76)( 34, 74)( 35, 75)( 36, 73)( 37, 71)( 38, 72)( 39, 70)
( 40, 68)( 41, 69)( 42, 67)( 43, 65)( 44, 66)( 45, 64)( 46, 62)( 47, 63)
( 48, 61)( 49, 59)( 50, 60)( 51, 58)(103,106)(104,107)(105,108)(109,151)
(110,152)(111,153)(112,148)(113,149)(114,150)(115,145)(116,146)(117,147)
(118,142)(119,143)(120,144)(121,139)(122,140)(123,141)(124,136)(125,137)
(126,138)(127,133)(128,134)(129,135);
s2 := Sym(153)!( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)
( 47, 48)( 50, 51)( 52,103)( 53,105)( 54,104)( 55,106)( 56,108)( 57,107)
( 58,109)( 59,111)( 60,110)( 61,112)( 62,114)( 63,113)( 64,115)( 65,117)
( 66,116)( 67,118)( 68,120)( 69,119)( 70,121)( 71,123)( 72,122)( 73,124)
( 74,126)( 75,125)( 76,127)( 77,129)( 78,128)( 79,130)( 80,132)( 81,131)
( 82,133)( 83,135)( 84,134)( 85,136)( 86,138)( 87,137)( 88,139)( 89,141)
( 90,140)( 91,142)( 92,144)( 93,143)( 94,145)( 95,147)( 96,146)( 97,148)
( 98,150)( 99,149)(100,151)(101,153)(102,152);
poly := sub<Sym(153)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope