include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {51,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {51,2}*204
if this polytope has a name.
Group : SmallGroup(204,11)
Rank : 3
Schlafli Type : {51,2}
Number of vertices, edges, etc : 51, 51, 2
Order of s0s1s2 : 102
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{51,2,2} of size 408
{51,2,3} of size 612
{51,2,4} of size 816
{51,2,5} of size 1020
{51,2,6} of size 1224
{51,2,7} of size 1428
{51,2,8} of size 1632
{51,2,9} of size 1836
Vertex Figure Of :
{2,51,2} of size 408
{4,51,2} of size 816
{6,51,2} of size 1224
{6,51,2} of size 1632
{4,51,2} of size 1632
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {17,2}*68
17-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {102,2}*408
3-fold covers : {153,2}*612, {51,6}*612
4-fold covers : {204,2}*816, {102,4}*816a, {51,4}*816
5-fold covers : {255,2}*1020
6-fold covers : {306,2}*1224, {102,6}*1224b, {102,6}*1224c
7-fold covers : {357,2}*1428
8-fold covers : {204,4}*1632a, {408,2}*1632, {102,8}*1632, {51,8}*1632, {102,4}*1632
9-fold covers : {459,2}*1836, {153,6}*1836, {51,6}*1836
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)
(44,45)(46,47)(48,49)(50,51);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50);;
s2 := (52,53);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)
(42,43)(44,45)(46,47)(48,49)(50,51);
s1 := Sym(53)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50);
s2 := Sym(53)!(52,53);
poly := sub<Sym(53)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope