Polytope of Type {2,460}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,460}*1840
if this polytope has a name.
Group : SmallGroup(1840,158)
Rank : 3
Schlafli Type : {2,460}
Number of vertices, edges, etc : 2, 460, 460
Order of s0s1s2 : 460
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,230}*920
   4-fold quotients : {2,115}*460
   5-fold quotients : {2,92}*368
   10-fold quotients : {2,46}*184
   20-fold quotients : {2,23}*92
   23-fold quotients : {2,20}*80
   46-fold quotients : {2,10}*40
   92-fold quotients : {2,5}*20
   115-fold quotients : {2,4}*16
   230-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 25)(  5, 24)(  6, 23)(  7, 22)(  8, 21)(  9, 20)( 10, 19)( 11, 18)
( 12, 17)( 13, 16)( 14, 15)( 26, 95)( 27,117)( 28,116)( 29,115)( 30,114)
( 31,113)( 32,112)( 33,111)( 34,110)( 35,109)( 36,108)( 37,107)( 38,106)
( 39,105)( 40,104)( 41,103)( 42,102)( 43,101)( 44,100)( 45, 99)( 46, 98)
( 47, 97)( 48, 96)( 49, 72)( 50, 94)( 51, 93)( 52, 92)( 53, 91)( 54, 90)
( 55, 89)( 56, 88)( 57, 87)( 58, 86)( 59, 85)( 60, 84)( 61, 83)( 62, 82)
( 63, 81)( 64, 80)( 65, 79)( 66, 78)( 67, 77)( 68, 76)( 69, 75)( 70, 74)
( 71, 73)(119,140)(120,139)(121,138)(122,137)(123,136)(124,135)(125,134)
(126,133)(127,132)(128,131)(129,130)(141,210)(142,232)(143,231)(144,230)
(145,229)(146,228)(147,227)(148,226)(149,225)(150,224)(151,223)(152,222)
(153,221)(154,220)(155,219)(156,218)(157,217)(158,216)(159,215)(160,214)
(161,213)(162,212)(163,211)(164,187)(165,209)(166,208)(167,207)(168,206)
(169,205)(170,204)(171,203)(172,202)(173,201)(174,200)(175,199)(176,198)
(177,197)(178,196)(179,195)(180,194)(181,193)(182,192)(183,191)(184,190)
(185,189)(186,188)(233,348)(234,370)(235,369)(236,368)(237,367)(238,366)
(239,365)(240,364)(241,363)(242,362)(243,361)(244,360)(245,359)(246,358)
(247,357)(248,356)(249,355)(250,354)(251,353)(252,352)(253,351)(254,350)
(255,349)(256,440)(257,462)(258,461)(259,460)(260,459)(261,458)(262,457)
(263,456)(264,455)(265,454)(266,453)(267,452)(268,451)(269,450)(270,449)
(271,448)(272,447)(273,446)(274,445)(275,444)(276,443)(277,442)(278,441)
(279,417)(280,439)(281,438)(282,437)(283,436)(284,435)(285,434)(286,433)
(287,432)(288,431)(289,430)(290,429)(291,428)(292,427)(293,426)(294,425)
(295,424)(296,423)(297,422)(298,421)(299,420)(300,419)(301,418)(302,394)
(303,416)(304,415)(305,414)(306,413)(307,412)(308,411)(309,410)(310,409)
(311,408)(312,407)(313,406)(314,405)(315,404)(316,403)(317,402)(318,401)
(319,400)(320,399)(321,398)(322,397)(323,396)(324,395)(325,371)(326,393)
(327,392)(328,391)(329,390)(330,389)(331,388)(332,387)(333,386)(334,385)
(335,384)(336,383)(337,382)(338,381)(339,380)(340,379)(341,378)(342,377)
(343,376)(344,375)(345,374)(346,373)(347,372);;
s2 := (  3,257)(  4,256)(  5,278)(  6,277)(  7,276)(  8,275)(  9,274)( 10,273)
( 11,272)( 12,271)( 13,270)( 14,269)( 15,268)( 16,267)( 17,266)( 18,265)
( 19,264)( 20,263)( 21,262)( 22,261)( 23,260)( 24,259)( 25,258)( 26,234)
( 27,233)( 28,255)( 29,254)( 30,253)( 31,252)( 32,251)( 33,250)( 34,249)
( 35,248)( 36,247)( 37,246)( 38,245)( 39,244)( 40,243)( 41,242)( 42,241)
( 43,240)( 44,239)( 45,238)( 46,237)( 47,236)( 48,235)( 49,326)( 50,325)
( 51,347)( 52,346)( 53,345)( 54,344)( 55,343)( 56,342)( 57,341)( 58,340)
( 59,339)( 60,338)( 61,337)( 62,336)( 63,335)( 64,334)( 65,333)( 66,332)
( 67,331)( 68,330)( 69,329)( 70,328)( 71,327)( 72,303)( 73,302)( 74,324)
( 75,323)( 76,322)( 77,321)( 78,320)( 79,319)( 80,318)( 81,317)( 82,316)
( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,310)( 89,309)( 90,308)
( 91,307)( 92,306)( 93,305)( 94,304)( 95,280)( 96,279)( 97,301)( 98,300)
( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)(105,293)(106,292)
(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)(113,285)(114,284)
(115,283)(116,282)(117,281)(118,372)(119,371)(120,393)(121,392)(122,391)
(123,390)(124,389)(125,388)(126,387)(127,386)(128,385)(129,384)(130,383)
(131,382)(132,381)(133,380)(134,379)(135,378)(136,377)(137,376)(138,375)
(139,374)(140,373)(141,349)(142,348)(143,370)(144,369)(145,368)(146,367)
(147,366)(148,365)(149,364)(150,363)(151,362)(152,361)(153,360)(154,359)
(155,358)(156,357)(157,356)(158,355)(159,354)(160,353)(161,352)(162,351)
(163,350)(164,441)(165,440)(166,462)(167,461)(168,460)(169,459)(170,458)
(171,457)(172,456)(173,455)(174,454)(175,453)(176,452)(177,451)(178,450)
(179,449)(180,448)(181,447)(182,446)(183,445)(184,444)(185,443)(186,442)
(187,418)(188,417)(189,439)(190,438)(191,437)(192,436)(193,435)(194,434)
(195,433)(196,432)(197,431)(198,430)(199,429)(200,428)(201,427)(202,426)
(203,425)(204,424)(205,423)(206,422)(207,421)(208,420)(209,419)(210,395)
(211,394)(212,416)(213,415)(214,414)(215,413)(216,412)(217,411)(218,410)
(219,409)(220,408)(221,407)(222,406)(223,405)(224,404)(225,403)(226,402)
(227,401)(228,400)(229,399)(230,398)(231,397)(232,396);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(462)!(1,2);
s1 := Sym(462)!(  4, 25)(  5, 24)(  6, 23)(  7, 22)(  8, 21)(  9, 20)( 10, 19)
( 11, 18)( 12, 17)( 13, 16)( 14, 15)( 26, 95)( 27,117)( 28,116)( 29,115)
( 30,114)( 31,113)( 32,112)( 33,111)( 34,110)( 35,109)( 36,108)( 37,107)
( 38,106)( 39,105)( 40,104)( 41,103)( 42,102)( 43,101)( 44,100)( 45, 99)
( 46, 98)( 47, 97)( 48, 96)( 49, 72)( 50, 94)( 51, 93)( 52, 92)( 53, 91)
( 54, 90)( 55, 89)( 56, 88)( 57, 87)( 58, 86)( 59, 85)( 60, 84)( 61, 83)
( 62, 82)( 63, 81)( 64, 80)( 65, 79)( 66, 78)( 67, 77)( 68, 76)( 69, 75)
( 70, 74)( 71, 73)(119,140)(120,139)(121,138)(122,137)(123,136)(124,135)
(125,134)(126,133)(127,132)(128,131)(129,130)(141,210)(142,232)(143,231)
(144,230)(145,229)(146,228)(147,227)(148,226)(149,225)(150,224)(151,223)
(152,222)(153,221)(154,220)(155,219)(156,218)(157,217)(158,216)(159,215)
(160,214)(161,213)(162,212)(163,211)(164,187)(165,209)(166,208)(167,207)
(168,206)(169,205)(170,204)(171,203)(172,202)(173,201)(174,200)(175,199)
(176,198)(177,197)(178,196)(179,195)(180,194)(181,193)(182,192)(183,191)
(184,190)(185,189)(186,188)(233,348)(234,370)(235,369)(236,368)(237,367)
(238,366)(239,365)(240,364)(241,363)(242,362)(243,361)(244,360)(245,359)
(246,358)(247,357)(248,356)(249,355)(250,354)(251,353)(252,352)(253,351)
(254,350)(255,349)(256,440)(257,462)(258,461)(259,460)(260,459)(261,458)
(262,457)(263,456)(264,455)(265,454)(266,453)(267,452)(268,451)(269,450)
(270,449)(271,448)(272,447)(273,446)(274,445)(275,444)(276,443)(277,442)
(278,441)(279,417)(280,439)(281,438)(282,437)(283,436)(284,435)(285,434)
(286,433)(287,432)(288,431)(289,430)(290,429)(291,428)(292,427)(293,426)
(294,425)(295,424)(296,423)(297,422)(298,421)(299,420)(300,419)(301,418)
(302,394)(303,416)(304,415)(305,414)(306,413)(307,412)(308,411)(309,410)
(310,409)(311,408)(312,407)(313,406)(314,405)(315,404)(316,403)(317,402)
(318,401)(319,400)(320,399)(321,398)(322,397)(323,396)(324,395)(325,371)
(326,393)(327,392)(328,391)(329,390)(330,389)(331,388)(332,387)(333,386)
(334,385)(335,384)(336,383)(337,382)(338,381)(339,380)(340,379)(341,378)
(342,377)(343,376)(344,375)(345,374)(346,373)(347,372);
s2 := Sym(462)!(  3,257)(  4,256)(  5,278)(  6,277)(  7,276)(  8,275)(  9,274)
( 10,273)( 11,272)( 12,271)( 13,270)( 14,269)( 15,268)( 16,267)( 17,266)
( 18,265)( 19,264)( 20,263)( 21,262)( 22,261)( 23,260)( 24,259)( 25,258)
( 26,234)( 27,233)( 28,255)( 29,254)( 30,253)( 31,252)( 32,251)( 33,250)
( 34,249)( 35,248)( 36,247)( 37,246)( 38,245)( 39,244)( 40,243)( 41,242)
( 42,241)( 43,240)( 44,239)( 45,238)( 46,237)( 47,236)( 48,235)( 49,326)
( 50,325)( 51,347)( 52,346)( 53,345)( 54,344)( 55,343)( 56,342)( 57,341)
( 58,340)( 59,339)( 60,338)( 61,337)( 62,336)( 63,335)( 64,334)( 65,333)
( 66,332)( 67,331)( 68,330)( 69,329)( 70,328)( 71,327)( 72,303)( 73,302)
( 74,324)( 75,323)( 76,322)( 77,321)( 78,320)( 79,319)( 80,318)( 81,317)
( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,310)( 89,309)
( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,280)( 96,279)( 97,301)
( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)(105,293)
(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)(113,285)
(114,284)(115,283)(116,282)(117,281)(118,372)(119,371)(120,393)(121,392)
(122,391)(123,390)(124,389)(125,388)(126,387)(127,386)(128,385)(129,384)
(130,383)(131,382)(132,381)(133,380)(134,379)(135,378)(136,377)(137,376)
(138,375)(139,374)(140,373)(141,349)(142,348)(143,370)(144,369)(145,368)
(146,367)(147,366)(148,365)(149,364)(150,363)(151,362)(152,361)(153,360)
(154,359)(155,358)(156,357)(157,356)(158,355)(159,354)(160,353)(161,352)
(162,351)(163,350)(164,441)(165,440)(166,462)(167,461)(168,460)(169,459)
(170,458)(171,457)(172,456)(173,455)(174,454)(175,453)(176,452)(177,451)
(178,450)(179,449)(180,448)(181,447)(182,446)(183,445)(184,444)(185,443)
(186,442)(187,418)(188,417)(189,439)(190,438)(191,437)(192,436)(193,435)
(194,434)(195,433)(196,432)(197,431)(198,430)(199,429)(200,428)(201,427)
(202,426)(203,425)(204,424)(205,423)(206,422)(207,421)(208,420)(209,419)
(210,395)(211,394)(212,416)(213,415)(214,414)(215,413)(216,412)(217,411)
(218,410)(219,409)(220,408)(221,407)(222,406)(223,405)(224,404)(225,403)
(226,402)(227,401)(228,400)(229,399)(230,398)(231,397)(232,396);
poly := sub<Sym(462)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope