include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {26,6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {26,6,3,2}*1872
if this polytope has a name.
Group : SmallGroup(1872,1061)
Rank : 5
Schlafli Type : {26,6,3,2}
Number of vertices, edges, etc : 26, 78, 9, 3, 2
Order of s0s1s2s3s4 : 78
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {26,2,3,2}*624
6-fold quotients : {13,2,3,2}*312
13-fold quotients : {2,6,3,2}*144
39-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 15, 26)( 16, 25)
( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 28, 39)( 29, 38)( 30, 37)( 31, 36)
( 32, 35)( 33, 34)( 41, 52)( 42, 51)( 43, 50)( 44, 49)( 45, 48)( 46, 47)
( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 67, 78)( 68, 77)
( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 80, 91)( 81, 90)( 82, 89)( 83, 88)
( 84, 87)( 85, 86)( 93,104)( 94,103)( 95,102)( 96,101)( 97,100)( 98, 99)
(106,117)(107,116)(108,115)(109,114)(110,113)(111,112);;
s1 := ( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 28)( 15, 27)
( 16, 39)( 17, 38)( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)( 23, 32)
( 24, 31)( 25, 30)( 26, 29)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)
( 46, 48)( 53, 67)( 54, 66)( 55, 78)( 56, 77)( 57, 76)( 58, 75)( 59, 74)
( 60, 73)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 79, 80)( 81, 91)
( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 92,106)( 93,105)( 94,117)( 95,116)
( 96,115)( 97,114)( 98,113)( 99,112)(100,111)(101,110)(102,109)(103,108)
(104,107);;
s2 := ( 1, 14)( 2, 15)( 3, 16)( 4, 17)( 5, 18)( 6, 19)( 7, 20)( 8, 21)
( 9, 22)( 10, 23)( 11, 24)( 12, 25)( 13, 26)( 40, 92)( 41, 93)( 42, 94)
( 43, 95)( 44, 96)( 45, 97)( 46, 98)( 47, 99)( 48,100)( 49,101)( 50,102)
( 51,103)( 52,104)( 53, 79)( 54, 80)( 55, 81)( 56, 82)( 57, 83)( 58, 84)
( 59, 85)( 60, 86)( 61, 87)( 62, 88)( 63, 89)( 64, 90)( 65, 91)( 66,105)
( 67,106)( 68,107)( 69,108)( 70,109)( 71,110)( 72,111)( 73,112)( 74,113)
( 75,114)( 76,115)( 77,116)( 78,117);;
s3 := ( 1, 40)( 2, 41)( 3, 42)( 4, 43)( 5, 44)( 6, 45)( 7, 46)( 8, 47)
( 9, 48)( 10, 49)( 11, 50)( 12, 51)( 13, 52)( 14, 66)( 15, 67)( 16, 68)
( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 73)( 22, 74)( 23, 75)( 24, 76)
( 25, 77)( 26, 78)( 27, 53)( 28, 54)( 29, 55)( 30, 56)( 31, 57)( 32, 58)
( 33, 59)( 34, 60)( 35, 61)( 36, 62)( 37, 63)( 38, 64)( 39, 65)( 92,105)
( 93,106)( 94,107)( 95,108)( 96,109)( 97,110)( 98,111)( 99,112)(100,113)
(101,114)(102,115)(103,116)(104,117);;
s4 := (118,119);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(119)!( 2, 13)( 3, 12)( 4, 11)( 5, 10)( 6, 9)( 7, 8)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 28, 39)( 29, 38)( 30, 37)
( 31, 36)( 32, 35)( 33, 34)( 41, 52)( 42, 51)( 43, 50)( 44, 49)( 45, 48)
( 46, 47)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 67, 78)
( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 80, 91)( 81, 90)( 82, 89)
( 83, 88)( 84, 87)( 85, 86)( 93,104)( 94,103)( 95,102)( 96,101)( 97,100)
( 98, 99)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112);
s1 := Sym(119)!( 1, 2)( 3, 13)( 4, 12)( 5, 11)( 6, 10)( 7, 9)( 14, 28)
( 15, 27)( 16, 39)( 17, 38)( 18, 37)( 19, 36)( 20, 35)( 21, 34)( 22, 33)
( 23, 32)( 24, 31)( 25, 30)( 26, 29)( 40, 41)( 42, 52)( 43, 51)( 44, 50)
( 45, 49)( 46, 48)( 53, 67)( 54, 66)( 55, 78)( 56, 77)( 57, 76)( 58, 75)
( 59, 74)( 60, 73)( 61, 72)( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 79, 80)
( 81, 91)( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 92,106)( 93,105)( 94,117)
( 95,116)( 96,115)( 97,114)( 98,113)( 99,112)(100,111)(101,110)(102,109)
(103,108)(104,107);
s2 := Sym(119)!( 1, 14)( 2, 15)( 3, 16)( 4, 17)( 5, 18)( 6, 19)( 7, 20)
( 8, 21)( 9, 22)( 10, 23)( 11, 24)( 12, 25)( 13, 26)( 40, 92)( 41, 93)
( 42, 94)( 43, 95)( 44, 96)( 45, 97)( 46, 98)( 47, 99)( 48,100)( 49,101)
( 50,102)( 51,103)( 52,104)( 53, 79)( 54, 80)( 55, 81)( 56, 82)( 57, 83)
( 58, 84)( 59, 85)( 60, 86)( 61, 87)( 62, 88)( 63, 89)( 64, 90)( 65, 91)
( 66,105)( 67,106)( 68,107)( 69,108)( 70,109)( 71,110)( 72,111)( 73,112)
( 74,113)( 75,114)( 76,115)( 77,116)( 78,117);
s3 := Sym(119)!( 1, 40)( 2, 41)( 3, 42)( 4, 43)( 5, 44)( 6, 45)( 7, 46)
( 8, 47)( 9, 48)( 10, 49)( 11, 50)( 12, 51)( 13, 52)( 14, 66)( 15, 67)
( 16, 68)( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 73)( 22, 74)( 23, 75)
( 24, 76)( 25, 77)( 26, 78)( 27, 53)( 28, 54)( 29, 55)( 30, 56)( 31, 57)
( 32, 58)( 33, 59)( 34, 60)( 35, 61)( 36, 62)( 37, 63)( 38, 64)( 39, 65)
( 92,105)( 93,106)( 94,107)( 95,108)( 96,109)( 97,110)( 98,111)( 99,112)
(100,113)(101,114)(102,115)(103,116)(104,117);
s4 := Sym(119)!(118,119);
poly := sub<Sym(119)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope