Polytope of Type {13,2,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {13,2,3,2}*312
if this polytope has a name.
Group : SmallGroup(312,54)
Rank : 5
Schlafli Type : {13,2,3,2}
Number of vertices, edges, etc : 13, 13, 3, 3, 2
Order of s0s1s2s3s4 : 78
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {13,2,3,2,2} of size 624
   {13,2,3,2,3} of size 936
   {13,2,3,2,4} of size 1248
   {13,2,3,2,5} of size 1560
   {13,2,3,2,6} of size 1872
Vertex Figure Of :
   {2,13,2,3,2} of size 624
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {13,2,6,2}*624, {26,2,3,2}*624
   3-fold covers : {13,2,9,2}*936, {13,2,3,6}*936, {39,2,3,2}*936
   4-fold covers : {13,2,12,2}*1248, {52,2,3,2}*1248, {13,2,6,4}*1248a, {13,2,3,4}*1248, {26,2,6,2}*1248
   5-fold covers : {13,2,15,2}*1560, {65,2,3,2}*1560
   6-fold covers : {13,2,18,2}*1872, {26,2,9,2}*1872, {13,2,6,6}*1872a, {13,2,6,6}*1872c, {26,2,3,6}*1872, {26,6,3,2}*1872, {39,2,6,2}*1872, {78,2,3,2}*1872
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);;
s2 := (15,16);;
s3 := (14,15);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);
s1 := Sym(18)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);
s2 := Sym(18)!(15,16);
s3 := Sym(18)!(14,15);
s4 := Sym(18)!(17,18);
poly := sub<Sym(18)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope