include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,472}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,472}*1888
if this polytope has a name.
Group : SmallGroup(1888,157)
Rank : 3
Schlafli Type : {2,472}
Number of vertices, edges, etc : 2, 472, 472
Order of s0s1s2 : 472
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,236}*944
4-fold quotients : {2,118}*472
8-fold quotients : {2,59}*236
59-fold quotients : {2,8}*32
118-fold quotients : {2,4}*16
236-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 61)( 5, 60)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 55)( 11, 54)
( 12, 53)( 13, 52)( 14, 51)( 15, 50)( 16, 49)( 17, 48)( 18, 47)( 19, 46)
( 20, 45)( 21, 44)( 22, 43)( 23, 42)( 24, 41)( 25, 40)( 26, 39)( 27, 38)
( 28, 37)( 29, 36)( 30, 35)( 31, 34)( 32, 33)( 63,120)( 64,119)( 65,118)
( 66,117)( 67,116)( 68,115)( 69,114)( 70,113)( 71,112)( 72,111)( 73,110)
( 74,109)( 75,108)( 76,107)( 77,106)( 78,105)( 79,104)( 80,103)( 81,102)
( 82,101)( 83,100)( 84, 99)( 85, 98)( 86, 97)( 87, 96)( 88, 95)( 89, 94)
( 90, 93)( 91, 92)(121,180)(122,238)(123,237)(124,236)(125,235)(126,234)
(127,233)(128,232)(129,231)(130,230)(131,229)(132,228)(133,227)(134,226)
(135,225)(136,224)(137,223)(138,222)(139,221)(140,220)(141,219)(142,218)
(143,217)(144,216)(145,215)(146,214)(147,213)(148,212)(149,211)(150,210)
(151,209)(152,208)(153,207)(154,206)(155,205)(156,204)(157,203)(158,202)
(159,201)(160,200)(161,199)(162,198)(163,197)(164,196)(165,195)(166,194)
(167,193)(168,192)(169,191)(170,190)(171,189)(172,188)(173,187)(174,186)
(175,185)(176,184)(177,183)(178,182)(179,181)(239,357)(240,415)(241,414)
(242,413)(243,412)(244,411)(245,410)(246,409)(247,408)(248,407)(249,406)
(250,405)(251,404)(252,403)(253,402)(254,401)(255,400)(256,399)(257,398)
(258,397)(259,396)(260,395)(261,394)(262,393)(263,392)(264,391)(265,390)
(266,389)(267,388)(268,387)(269,386)(270,385)(271,384)(272,383)(273,382)
(274,381)(275,380)(276,379)(277,378)(278,377)(279,376)(280,375)(281,374)
(282,373)(283,372)(284,371)(285,370)(286,369)(287,368)(288,367)(289,366)
(290,365)(291,364)(292,363)(293,362)(294,361)(295,360)(296,359)(297,358)
(298,416)(299,474)(300,473)(301,472)(302,471)(303,470)(304,469)(305,468)
(306,467)(307,466)(308,465)(309,464)(310,463)(311,462)(312,461)(313,460)
(314,459)(315,458)(316,457)(317,456)(318,455)(319,454)(320,453)(321,452)
(322,451)(323,450)(324,449)(325,448)(326,447)(327,446)(328,445)(329,444)
(330,443)(331,442)(332,441)(333,440)(334,439)(335,438)(336,437)(337,436)
(338,435)(339,434)(340,433)(341,432)(342,431)(343,430)(344,429)(345,428)
(346,427)(347,426)(348,425)(349,424)(350,423)(351,422)(352,421)(353,420)
(354,419)(355,418)(356,417);;
s2 := ( 3,240)( 4,239)( 5,297)( 6,296)( 7,295)( 8,294)( 9,293)( 10,292)
( 11,291)( 12,290)( 13,289)( 14,288)( 15,287)( 16,286)( 17,285)( 18,284)
( 19,283)( 20,282)( 21,281)( 22,280)( 23,279)( 24,278)( 25,277)( 26,276)
( 27,275)( 28,274)( 29,273)( 30,272)( 31,271)( 32,270)( 33,269)( 34,268)
( 35,267)( 36,266)( 37,265)( 38,264)( 39,263)( 40,262)( 41,261)( 42,260)
( 43,259)( 44,258)( 45,257)( 46,256)( 47,255)( 48,254)( 49,253)( 50,252)
( 51,251)( 52,250)( 53,249)( 54,248)( 55,247)( 56,246)( 57,245)( 58,244)
( 59,243)( 60,242)( 61,241)( 62,299)( 63,298)( 64,356)( 65,355)( 66,354)
( 67,353)( 68,352)( 69,351)( 70,350)( 71,349)( 72,348)( 73,347)( 74,346)
( 75,345)( 76,344)( 77,343)( 78,342)( 79,341)( 80,340)( 81,339)( 82,338)
( 83,337)( 84,336)( 85,335)( 86,334)( 87,333)( 88,332)( 89,331)( 90,330)
( 91,329)( 92,328)( 93,327)( 94,326)( 95,325)( 96,324)( 97,323)( 98,322)
( 99,321)(100,320)(101,319)(102,318)(103,317)(104,316)(105,315)(106,314)
(107,313)(108,312)(109,311)(110,310)(111,309)(112,308)(113,307)(114,306)
(115,305)(116,304)(117,303)(118,302)(119,301)(120,300)(121,417)(122,416)
(123,474)(124,473)(125,472)(126,471)(127,470)(128,469)(129,468)(130,467)
(131,466)(132,465)(133,464)(134,463)(135,462)(136,461)(137,460)(138,459)
(139,458)(140,457)(141,456)(142,455)(143,454)(144,453)(145,452)(146,451)
(147,450)(148,449)(149,448)(150,447)(151,446)(152,445)(153,444)(154,443)
(155,442)(156,441)(157,440)(158,439)(159,438)(160,437)(161,436)(162,435)
(163,434)(164,433)(165,432)(166,431)(167,430)(168,429)(169,428)(170,427)
(171,426)(172,425)(173,424)(174,423)(175,422)(176,421)(177,420)(178,419)
(179,418)(180,358)(181,357)(182,415)(183,414)(184,413)(185,412)(186,411)
(187,410)(188,409)(189,408)(190,407)(191,406)(192,405)(193,404)(194,403)
(195,402)(196,401)(197,400)(198,399)(199,398)(200,397)(201,396)(202,395)
(203,394)(204,393)(205,392)(206,391)(207,390)(208,389)(209,388)(210,387)
(211,386)(212,385)(213,384)(214,383)(215,382)(216,381)(217,380)(218,379)
(219,378)(220,377)(221,376)(222,375)(223,374)(224,373)(225,372)(226,371)
(227,370)(228,369)(229,368)(230,367)(231,366)(232,365)(233,364)(234,363)
(235,362)(236,361)(237,360)(238,359);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(474)!(1,2);
s1 := Sym(474)!( 4, 61)( 5, 60)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 55)
( 11, 54)( 12, 53)( 13, 52)( 14, 51)( 15, 50)( 16, 49)( 17, 48)( 18, 47)
( 19, 46)( 20, 45)( 21, 44)( 22, 43)( 23, 42)( 24, 41)( 25, 40)( 26, 39)
( 27, 38)( 28, 37)( 29, 36)( 30, 35)( 31, 34)( 32, 33)( 63,120)( 64,119)
( 65,118)( 66,117)( 67,116)( 68,115)( 69,114)( 70,113)( 71,112)( 72,111)
( 73,110)( 74,109)( 75,108)( 76,107)( 77,106)( 78,105)( 79,104)( 80,103)
( 81,102)( 82,101)( 83,100)( 84, 99)( 85, 98)( 86, 97)( 87, 96)( 88, 95)
( 89, 94)( 90, 93)( 91, 92)(121,180)(122,238)(123,237)(124,236)(125,235)
(126,234)(127,233)(128,232)(129,231)(130,230)(131,229)(132,228)(133,227)
(134,226)(135,225)(136,224)(137,223)(138,222)(139,221)(140,220)(141,219)
(142,218)(143,217)(144,216)(145,215)(146,214)(147,213)(148,212)(149,211)
(150,210)(151,209)(152,208)(153,207)(154,206)(155,205)(156,204)(157,203)
(158,202)(159,201)(160,200)(161,199)(162,198)(163,197)(164,196)(165,195)
(166,194)(167,193)(168,192)(169,191)(170,190)(171,189)(172,188)(173,187)
(174,186)(175,185)(176,184)(177,183)(178,182)(179,181)(239,357)(240,415)
(241,414)(242,413)(243,412)(244,411)(245,410)(246,409)(247,408)(248,407)
(249,406)(250,405)(251,404)(252,403)(253,402)(254,401)(255,400)(256,399)
(257,398)(258,397)(259,396)(260,395)(261,394)(262,393)(263,392)(264,391)
(265,390)(266,389)(267,388)(268,387)(269,386)(270,385)(271,384)(272,383)
(273,382)(274,381)(275,380)(276,379)(277,378)(278,377)(279,376)(280,375)
(281,374)(282,373)(283,372)(284,371)(285,370)(286,369)(287,368)(288,367)
(289,366)(290,365)(291,364)(292,363)(293,362)(294,361)(295,360)(296,359)
(297,358)(298,416)(299,474)(300,473)(301,472)(302,471)(303,470)(304,469)
(305,468)(306,467)(307,466)(308,465)(309,464)(310,463)(311,462)(312,461)
(313,460)(314,459)(315,458)(316,457)(317,456)(318,455)(319,454)(320,453)
(321,452)(322,451)(323,450)(324,449)(325,448)(326,447)(327,446)(328,445)
(329,444)(330,443)(331,442)(332,441)(333,440)(334,439)(335,438)(336,437)
(337,436)(338,435)(339,434)(340,433)(341,432)(342,431)(343,430)(344,429)
(345,428)(346,427)(347,426)(348,425)(349,424)(350,423)(351,422)(352,421)
(353,420)(354,419)(355,418)(356,417);
s2 := Sym(474)!( 3,240)( 4,239)( 5,297)( 6,296)( 7,295)( 8,294)( 9,293)
( 10,292)( 11,291)( 12,290)( 13,289)( 14,288)( 15,287)( 16,286)( 17,285)
( 18,284)( 19,283)( 20,282)( 21,281)( 22,280)( 23,279)( 24,278)( 25,277)
( 26,276)( 27,275)( 28,274)( 29,273)( 30,272)( 31,271)( 32,270)( 33,269)
( 34,268)( 35,267)( 36,266)( 37,265)( 38,264)( 39,263)( 40,262)( 41,261)
( 42,260)( 43,259)( 44,258)( 45,257)( 46,256)( 47,255)( 48,254)( 49,253)
( 50,252)( 51,251)( 52,250)( 53,249)( 54,248)( 55,247)( 56,246)( 57,245)
( 58,244)( 59,243)( 60,242)( 61,241)( 62,299)( 63,298)( 64,356)( 65,355)
( 66,354)( 67,353)( 68,352)( 69,351)( 70,350)( 71,349)( 72,348)( 73,347)
( 74,346)( 75,345)( 76,344)( 77,343)( 78,342)( 79,341)( 80,340)( 81,339)
( 82,338)( 83,337)( 84,336)( 85,335)( 86,334)( 87,333)( 88,332)( 89,331)
( 90,330)( 91,329)( 92,328)( 93,327)( 94,326)( 95,325)( 96,324)( 97,323)
( 98,322)( 99,321)(100,320)(101,319)(102,318)(103,317)(104,316)(105,315)
(106,314)(107,313)(108,312)(109,311)(110,310)(111,309)(112,308)(113,307)
(114,306)(115,305)(116,304)(117,303)(118,302)(119,301)(120,300)(121,417)
(122,416)(123,474)(124,473)(125,472)(126,471)(127,470)(128,469)(129,468)
(130,467)(131,466)(132,465)(133,464)(134,463)(135,462)(136,461)(137,460)
(138,459)(139,458)(140,457)(141,456)(142,455)(143,454)(144,453)(145,452)
(146,451)(147,450)(148,449)(149,448)(150,447)(151,446)(152,445)(153,444)
(154,443)(155,442)(156,441)(157,440)(158,439)(159,438)(160,437)(161,436)
(162,435)(163,434)(164,433)(165,432)(166,431)(167,430)(168,429)(169,428)
(170,427)(171,426)(172,425)(173,424)(174,423)(175,422)(176,421)(177,420)
(178,419)(179,418)(180,358)(181,357)(182,415)(183,414)(184,413)(185,412)
(186,411)(187,410)(188,409)(189,408)(190,407)(191,406)(192,405)(193,404)
(194,403)(195,402)(196,401)(197,400)(198,399)(199,398)(200,397)(201,396)
(202,395)(203,394)(204,393)(205,392)(206,391)(207,390)(208,389)(209,388)
(210,387)(211,386)(212,385)(213,384)(214,383)(215,382)(216,381)(217,380)
(218,379)(219,378)(220,377)(221,376)(222,375)(223,374)(224,373)(225,372)
(226,371)(227,370)(228,369)(229,368)(230,367)(231,366)(232,365)(233,364)
(234,363)(235,362)(236,361)(237,360)(238,359);
poly := sub<Sym(474)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope