include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {472}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {472}*944
Also Known As : 472-gon, {472}. if this polytope has another name.
Group : SmallGroup(944,6)
Rank : 2
Schlafli Type : {472}
Number of vertices, edges, etc : 472, 472
Order of s0s1 : 472
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{472,2} of size 1888
Vertex Figure Of :
{2,472} of size 1888
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {236}*472
4-fold quotients : {118}*236
8-fold quotients : {59}*118
59-fold quotients : {8}*16
118-fold quotients : {4}*8
236-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {944}*1888
Permutation Representation (GAP) :
s0 := ( 2, 59)( 3, 58)( 4, 57)( 5, 56)( 6, 55)( 7, 54)( 8, 53)( 9, 52)
( 10, 51)( 11, 50)( 12, 49)( 13, 48)( 14, 47)( 15, 46)( 16, 45)( 17, 44)
( 18, 43)( 19, 42)( 20, 41)( 21, 40)( 22, 39)( 23, 38)( 24, 37)( 25, 36)
( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)( 61,118)( 62,117)( 63,116)
( 64,115)( 65,114)( 66,113)( 67,112)( 68,111)( 69,110)( 70,109)( 71,108)
( 72,107)( 73,106)( 74,105)( 75,104)( 76,103)( 77,102)( 78,101)( 79,100)
( 80, 99)( 81, 98)( 82, 97)( 83, 96)( 84, 95)( 85, 94)( 86, 93)( 87, 92)
( 88, 91)( 89, 90)(119,178)(120,236)(121,235)(122,234)(123,233)(124,232)
(125,231)(126,230)(127,229)(128,228)(129,227)(130,226)(131,225)(132,224)
(133,223)(134,222)(135,221)(136,220)(137,219)(138,218)(139,217)(140,216)
(141,215)(142,214)(143,213)(144,212)(145,211)(146,210)(147,209)(148,208)
(149,207)(150,206)(151,205)(152,204)(153,203)(154,202)(155,201)(156,200)
(157,199)(158,198)(159,197)(160,196)(161,195)(162,194)(163,193)(164,192)
(165,191)(166,190)(167,189)(168,188)(169,187)(170,186)(171,185)(172,184)
(173,183)(174,182)(175,181)(176,180)(177,179)(237,355)(238,413)(239,412)
(240,411)(241,410)(242,409)(243,408)(244,407)(245,406)(246,405)(247,404)
(248,403)(249,402)(250,401)(251,400)(252,399)(253,398)(254,397)(255,396)
(256,395)(257,394)(258,393)(259,392)(260,391)(261,390)(262,389)(263,388)
(264,387)(265,386)(266,385)(267,384)(268,383)(269,382)(270,381)(271,380)
(272,379)(273,378)(274,377)(275,376)(276,375)(277,374)(278,373)(279,372)
(280,371)(281,370)(282,369)(283,368)(284,367)(285,366)(286,365)(287,364)
(288,363)(289,362)(290,361)(291,360)(292,359)(293,358)(294,357)(295,356)
(296,414)(297,472)(298,471)(299,470)(300,469)(301,468)(302,467)(303,466)
(304,465)(305,464)(306,463)(307,462)(308,461)(309,460)(310,459)(311,458)
(312,457)(313,456)(314,455)(315,454)(316,453)(317,452)(318,451)(319,450)
(320,449)(321,448)(322,447)(323,446)(324,445)(325,444)(326,443)(327,442)
(328,441)(329,440)(330,439)(331,438)(332,437)(333,436)(334,435)(335,434)
(336,433)(337,432)(338,431)(339,430)(340,429)(341,428)(342,427)(343,426)
(344,425)(345,424)(346,423)(347,422)(348,421)(349,420)(350,419)(351,418)
(352,417)(353,416)(354,415);;
s1 := ( 1,238)( 2,237)( 3,295)( 4,294)( 5,293)( 6,292)( 7,291)( 8,290)
( 9,289)( 10,288)( 11,287)( 12,286)( 13,285)( 14,284)( 15,283)( 16,282)
( 17,281)( 18,280)( 19,279)( 20,278)( 21,277)( 22,276)( 23,275)( 24,274)
( 25,273)( 26,272)( 27,271)( 28,270)( 29,269)( 30,268)( 31,267)( 32,266)
( 33,265)( 34,264)( 35,263)( 36,262)( 37,261)( 38,260)( 39,259)( 40,258)
( 41,257)( 42,256)( 43,255)( 44,254)( 45,253)( 46,252)( 47,251)( 48,250)
( 49,249)( 50,248)( 51,247)( 52,246)( 53,245)( 54,244)( 55,243)( 56,242)
( 57,241)( 58,240)( 59,239)( 60,297)( 61,296)( 62,354)( 63,353)( 64,352)
( 65,351)( 66,350)( 67,349)( 68,348)( 69,347)( 70,346)( 71,345)( 72,344)
( 73,343)( 74,342)( 75,341)( 76,340)( 77,339)( 78,338)( 79,337)( 80,336)
( 81,335)( 82,334)( 83,333)( 84,332)( 85,331)( 86,330)( 87,329)( 88,328)
( 89,327)( 90,326)( 91,325)( 92,324)( 93,323)( 94,322)( 95,321)( 96,320)
( 97,319)( 98,318)( 99,317)(100,316)(101,315)(102,314)(103,313)(104,312)
(105,311)(106,310)(107,309)(108,308)(109,307)(110,306)(111,305)(112,304)
(113,303)(114,302)(115,301)(116,300)(117,299)(118,298)(119,415)(120,414)
(121,472)(122,471)(123,470)(124,469)(125,468)(126,467)(127,466)(128,465)
(129,464)(130,463)(131,462)(132,461)(133,460)(134,459)(135,458)(136,457)
(137,456)(138,455)(139,454)(140,453)(141,452)(142,451)(143,450)(144,449)
(145,448)(146,447)(147,446)(148,445)(149,444)(150,443)(151,442)(152,441)
(153,440)(154,439)(155,438)(156,437)(157,436)(158,435)(159,434)(160,433)
(161,432)(162,431)(163,430)(164,429)(165,428)(166,427)(167,426)(168,425)
(169,424)(170,423)(171,422)(172,421)(173,420)(174,419)(175,418)(176,417)
(177,416)(178,356)(179,355)(180,413)(181,412)(182,411)(183,410)(184,409)
(185,408)(186,407)(187,406)(188,405)(189,404)(190,403)(191,402)(192,401)
(193,400)(194,399)(195,398)(196,397)(197,396)(198,395)(199,394)(200,393)
(201,392)(202,391)(203,390)(204,389)(205,388)(206,387)(207,386)(208,385)
(209,384)(210,383)(211,382)(212,381)(213,380)(214,379)(215,378)(216,377)
(217,376)(218,375)(219,374)(220,373)(221,372)(222,371)(223,370)(224,369)
(225,368)(226,367)(227,366)(228,365)(229,364)(230,363)(231,362)(232,361)
(233,360)(234,359)(235,358)(236,357);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(472)!( 2, 59)( 3, 58)( 4, 57)( 5, 56)( 6, 55)( 7, 54)( 8, 53)
( 9, 52)( 10, 51)( 11, 50)( 12, 49)( 13, 48)( 14, 47)( 15, 46)( 16, 45)
( 17, 44)( 18, 43)( 19, 42)( 20, 41)( 21, 40)( 22, 39)( 23, 38)( 24, 37)
( 25, 36)( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)( 61,118)( 62,117)
( 63,116)( 64,115)( 65,114)( 66,113)( 67,112)( 68,111)( 69,110)( 70,109)
( 71,108)( 72,107)( 73,106)( 74,105)( 75,104)( 76,103)( 77,102)( 78,101)
( 79,100)( 80, 99)( 81, 98)( 82, 97)( 83, 96)( 84, 95)( 85, 94)( 86, 93)
( 87, 92)( 88, 91)( 89, 90)(119,178)(120,236)(121,235)(122,234)(123,233)
(124,232)(125,231)(126,230)(127,229)(128,228)(129,227)(130,226)(131,225)
(132,224)(133,223)(134,222)(135,221)(136,220)(137,219)(138,218)(139,217)
(140,216)(141,215)(142,214)(143,213)(144,212)(145,211)(146,210)(147,209)
(148,208)(149,207)(150,206)(151,205)(152,204)(153,203)(154,202)(155,201)
(156,200)(157,199)(158,198)(159,197)(160,196)(161,195)(162,194)(163,193)
(164,192)(165,191)(166,190)(167,189)(168,188)(169,187)(170,186)(171,185)
(172,184)(173,183)(174,182)(175,181)(176,180)(177,179)(237,355)(238,413)
(239,412)(240,411)(241,410)(242,409)(243,408)(244,407)(245,406)(246,405)
(247,404)(248,403)(249,402)(250,401)(251,400)(252,399)(253,398)(254,397)
(255,396)(256,395)(257,394)(258,393)(259,392)(260,391)(261,390)(262,389)
(263,388)(264,387)(265,386)(266,385)(267,384)(268,383)(269,382)(270,381)
(271,380)(272,379)(273,378)(274,377)(275,376)(276,375)(277,374)(278,373)
(279,372)(280,371)(281,370)(282,369)(283,368)(284,367)(285,366)(286,365)
(287,364)(288,363)(289,362)(290,361)(291,360)(292,359)(293,358)(294,357)
(295,356)(296,414)(297,472)(298,471)(299,470)(300,469)(301,468)(302,467)
(303,466)(304,465)(305,464)(306,463)(307,462)(308,461)(309,460)(310,459)
(311,458)(312,457)(313,456)(314,455)(315,454)(316,453)(317,452)(318,451)
(319,450)(320,449)(321,448)(322,447)(323,446)(324,445)(325,444)(326,443)
(327,442)(328,441)(329,440)(330,439)(331,438)(332,437)(333,436)(334,435)
(335,434)(336,433)(337,432)(338,431)(339,430)(340,429)(341,428)(342,427)
(343,426)(344,425)(345,424)(346,423)(347,422)(348,421)(349,420)(350,419)
(351,418)(352,417)(353,416)(354,415);
s1 := Sym(472)!( 1,238)( 2,237)( 3,295)( 4,294)( 5,293)( 6,292)( 7,291)
( 8,290)( 9,289)( 10,288)( 11,287)( 12,286)( 13,285)( 14,284)( 15,283)
( 16,282)( 17,281)( 18,280)( 19,279)( 20,278)( 21,277)( 22,276)( 23,275)
( 24,274)( 25,273)( 26,272)( 27,271)( 28,270)( 29,269)( 30,268)( 31,267)
( 32,266)( 33,265)( 34,264)( 35,263)( 36,262)( 37,261)( 38,260)( 39,259)
( 40,258)( 41,257)( 42,256)( 43,255)( 44,254)( 45,253)( 46,252)( 47,251)
( 48,250)( 49,249)( 50,248)( 51,247)( 52,246)( 53,245)( 54,244)( 55,243)
( 56,242)( 57,241)( 58,240)( 59,239)( 60,297)( 61,296)( 62,354)( 63,353)
( 64,352)( 65,351)( 66,350)( 67,349)( 68,348)( 69,347)( 70,346)( 71,345)
( 72,344)( 73,343)( 74,342)( 75,341)( 76,340)( 77,339)( 78,338)( 79,337)
( 80,336)( 81,335)( 82,334)( 83,333)( 84,332)( 85,331)( 86,330)( 87,329)
( 88,328)( 89,327)( 90,326)( 91,325)( 92,324)( 93,323)( 94,322)( 95,321)
( 96,320)( 97,319)( 98,318)( 99,317)(100,316)(101,315)(102,314)(103,313)
(104,312)(105,311)(106,310)(107,309)(108,308)(109,307)(110,306)(111,305)
(112,304)(113,303)(114,302)(115,301)(116,300)(117,299)(118,298)(119,415)
(120,414)(121,472)(122,471)(123,470)(124,469)(125,468)(126,467)(127,466)
(128,465)(129,464)(130,463)(131,462)(132,461)(133,460)(134,459)(135,458)
(136,457)(137,456)(138,455)(139,454)(140,453)(141,452)(142,451)(143,450)
(144,449)(145,448)(146,447)(147,446)(148,445)(149,444)(150,443)(151,442)
(152,441)(153,440)(154,439)(155,438)(156,437)(157,436)(158,435)(159,434)
(160,433)(161,432)(162,431)(163,430)(164,429)(165,428)(166,427)(167,426)
(168,425)(169,424)(170,423)(171,422)(172,421)(173,420)(174,419)(175,418)
(176,417)(177,416)(178,356)(179,355)(180,413)(181,412)(182,411)(183,410)
(184,409)(185,408)(186,407)(187,406)(188,405)(189,404)(190,403)(191,402)
(192,401)(193,400)(194,399)(195,398)(196,397)(197,396)(198,395)(199,394)
(200,393)(201,392)(202,391)(203,390)(204,389)(205,388)(206,387)(207,386)
(208,385)(209,384)(210,383)(211,382)(212,381)(213,380)(214,379)(215,378)
(216,377)(217,376)(218,375)(219,374)(220,373)(221,372)(222,371)(223,370)
(224,369)(225,368)(226,367)(227,366)(228,365)(229,364)(230,363)(231,362)
(232,361)(233,360)(234,359)(235,358)(236,357);
poly := sub<Sym(472)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope