include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,474}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,474}*1896
if this polytope has a name.
Group : SmallGroup(1896,53)
Rank : 3
Schlafli Type : {2,474}
Number of vertices, edges, etc : 2, 474, 474
Order of s0s1s2 : 474
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,237}*948
3-fold quotients : {2,158}*632
6-fold quotients : {2,79}*316
79-fold quotients : {2,6}*24
158-fold quotients : {2,3}*12
237-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 81)( 5, 80)( 6, 79)( 7, 78)( 8, 77)( 9, 76)( 10, 75)( 11, 74)
( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)( 17, 68)( 18, 67)( 19, 66)
( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 60)( 26, 59)( 27, 58)
( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)( 33, 52)( 34, 51)( 35, 50)
( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)( 41, 44)( 42, 43)( 82,161)
( 83,239)( 84,238)( 85,237)( 86,236)( 87,235)( 88,234)( 89,233)( 90,232)
( 91,231)( 92,230)( 93,229)( 94,228)( 95,227)( 96,226)( 97,225)( 98,224)
( 99,223)(100,222)(101,221)(102,220)(103,219)(104,218)(105,217)(106,216)
(107,215)(108,214)(109,213)(110,212)(111,211)(112,210)(113,209)(114,208)
(115,207)(116,206)(117,205)(118,204)(119,203)(120,202)(121,201)(122,200)
(123,199)(124,198)(125,197)(126,196)(127,195)(128,194)(129,193)(130,192)
(131,191)(132,190)(133,189)(134,188)(135,187)(136,186)(137,185)(138,184)
(139,183)(140,182)(141,181)(142,180)(143,179)(144,178)(145,177)(146,176)
(147,175)(148,174)(149,173)(150,172)(151,171)(152,170)(153,169)(154,168)
(155,167)(156,166)(157,165)(158,164)(159,163)(160,162)(241,318)(242,317)
(243,316)(244,315)(245,314)(246,313)(247,312)(248,311)(249,310)(250,309)
(251,308)(252,307)(253,306)(254,305)(255,304)(256,303)(257,302)(258,301)
(259,300)(260,299)(261,298)(262,297)(263,296)(264,295)(265,294)(266,293)
(267,292)(268,291)(269,290)(270,289)(271,288)(272,287)(273,286)(274,285)
(275,284)(276,283)(277,282)(278,281)(279,280)(319,398)(320,476)(321,475)
(322,474)(323,473)(324,472)(325,471)(326,470)(327,469)(328,468)(329,467)
(330,466)(331,465)(332,464)(333,463)(334,462)(335,461)(336,460)(337,459)
(338,458)(339,457)(340,456)(341,455)(342,454)(343,453)(344,452)(345,451)
(346,450)(347,449)(348,448)(349,447)(350,446)(351,445)(352,444)(353,443)
(354,442)(355,441)(356,440)(357,439)(358,438)(359,437)(360,436)(361,435)
(362,434)(363,433)(364,432)(365,431)(366,430)(367,429)(368,428)(369,427)
(370,426)(371,425)(372,424)(373,423)(374,422)(375,421)(376,420)(377,419)
(378,418)(379,417)(380,416)(381,415)(382,414)(383,413)(384,412)(385,411)
(386,410)(387,409)(388,408)(389,407)(390,406)(391,405)(392,404)(393,403)
(394,402)(395,401)(396,400)(397,399);;
s2 := ( 3,320)( 4,319)( 5,397)( 6,396)( 7,395)( 8,394)( 9,393)( 10,392)
( 11,391)( 12,390)( 13,389)( 14,388)( 15,387)( 16,386)( 17,385)( 18,384)
( 19,383)( 20,382)( 21,381)( 22,380)( 23,379)( 24,378)( 25,377)( 26,376)
( 27,375)( 28,374)( 29,373)( 30,372)( 31,371)( 32,370)( 33,369)( 34,368)
( 35,367)( 36,366)( 37,365)( 38,364)( 39,363)( 40,362)( 41,361)( 42,360)
( 43,359)( 44,358)( 45,357)( 46,356)( 47,355)( 48,354)( 49,353)( 50,352)
( 51,351)( 52,350)( 53,349)( 54,348)( 55,347)( 56,346)( 57,345)( 58,344)
( 59,343)( 60,342)( 61,341)( 62,340)( 63,339)( 64,338)( 65,337)( 66,336)
( 67,335)( 68,334)( 69,333)( 70,332)( 71,331)( 72,330)( 73,329)( 74,328)
( 75,327)( 76,326)( 77,325)( 78,324)( 79,323)( 80,322)( 81,321)( 82,241)
( 83,240)( 84,318)( 85,317)( 86,316)( 87,315)( 88,314)( 89,313)( 90,312)
( 91,311)( 92,310)( 93,309)( 94,308)( 95,307)( 96,306)( 97,305)( 98,304)
( 99,303)(100,302)(101,301)(102,300)(103,299)(104,298)(105,297)(106,296)
(107,295)(108,294)(109,293)(110,292)(111,291)(112,290)(113,289)(114,288)
(115,287)(116,286)(117,285)(118,284)(119,283)(120,282)(121,281)(122,280)
(123,279)(124,278)(125,277)(126,276)(127,275)(128,274)(129,273)(130,272)
(131,271)(132,270)(133,269)(134,268)(135,267)(136,266)(137,265)(138,264)
(139,263)(140,262)(141,261)(142,260)(143,259)(144,258)(145,257)(146,256)
(147,255)(148,254)(149,253)(150,252)(151,251)(152,250)(153,249)(154,248)
(155,247)(156,246)(157,245)(158,244)(159,243)(160,242)(161,399)(162,398)
(163,476)(164,475)(165,474)(166,473)(167,472)(168,471)(169,470)(170,469)
(171,468)(172,467)(173,466)(174,465)(175,464)(176,463)(177,462)(178,461)
(179,460)(180,459)(181,458)(182,457)(183,456)(184,455)(185,454)(186,453)
(187,452)(188,451)(189,450)(190,449)(191,448)(192,447)(193,446)(194,445)
(195,444)(196,443)(197,442)(198,441)(199,440)(200,439)(201,438)(202,437)
(203,436)(204,435)(205,434)(206,433)(207,432)(208,431)(209,430)(210,429)
(211,428)(212,427)(213,426)(214,425)(215,424)(216,423)(217,422)(218,421)
(219,420)(220,419)(221,418)(222,417)(223,416)(224,415)(225,414)(226,413)
(227,412)(228,411)(229,410)(230,409)(231,408)(232,407)(233,406)(234,405)
(235,404)(236,403)(237,402)(238,401)(239,400);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(476)!(1,2);
s1 := Sym(476)!( 4, 81)( 5, 80)( 6, 79)( 7, 78)( 8, 77)( 9, 76)( 10, 75)
( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)( 17, 68)( 18, 67)
( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 60)( 26, 59)
( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)( 33, 52)( 34, 51)
( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)( 41, 44)( 42, 43)
( 82,161)( 83,239)( 84,238)( 85,237)( 86,236)( 87,235)( 88,234)( 89,233)
( 90,232)( 91,231)( 92,230)( 93,229)( 94,228)( 95,227)( 96,226)( 97,225)
( 98,224)( 99,223)(100,222)(101,221)(102,220)(103,219)(104,218)(105,217)
(106,216)(107,215)(108,214)(109,213)(110,212)(111,211)(112,210)(113,209)
(114,208)(115,207)(116,206)(117,205)(118,204)(119,203)(120,202)(121,201)
(122,200)(123,199)(124,198)(125,197)(126,196)(127,195)(128,194)(129,193)
(130,192)(131,191)(132,190)(133,189)(134,188)(135,187)(136,186)(137,185)
(138,184)(139,183)(140,182)(141,181)(142,180)(143,179)(144,178)(145,177)
(146,176)(147,175)(148,174)(149,173)(150,172)(151,171)(152,170)(153,169)
(154,168)(155,167)(156,166)(157,165)(158,164)(159,163)(160,162)(241,318)
(242,317)(243,316)(244,315)(245,314)(246,313)(247,312)(248,311)(249,310)
(250,309)(251,308)(252,307)(253,306)(254,305)(255,304)(256,303)(257,302)
(258,301)(259,300)(260,299)(261,298)(262,297)(263,296)(264,295)(265,294)
(266,293)(267,292)(268,291)(269,290)(270,289)(271,288)(272,287)(273,286)
(274,285)(275,284)(276,283)(277,282)(278,281)(279,280)(319,398)(320,476)
(321,475)(322,474)(323,473)(324,472)(325,471)(326,470)(327,469)(328,468)
(329,467)(330,466)(331,465)(332,464)(333,463)(334,462)(335,461)(336,460)
(337,459)(338,458)(339,457)(340,456)(341,455)(342,454)(343,453)(344,452)
(345,451)(346,450)(347,449)(348,448)(349,447)(350,446)(351,445)(352,444)
(353,443)(354,442)(355,441)(356,440)(357,439)(358,438)(359,437)(360,436)
(361,435)(362,434)(363,433)(364,432)(365,431)(366,430)(367,429)(368,428)
(369,427)(370,426)(371,425)(372,424)(373,423)(374,422)(375,421)(376,420)
(377,419)(378,418)(379,417)(380,416)(381,415)(382,414)(383,413)(384,412)
(385,411)(386,410)(387,409)(388,408)(389,407)(390,406)(391,405)(392,404)
(393,403)(394,402)(395,401)(396,400)(397,399);
s2 := Sym(476)!( 3,320)( 4,319)( 5,397)( 6,396)( 7,395)( 8,394)( 9,393)
( 10,392)( 11,391)( 12,390)( 13,389)( 14,388)( 15,387)( 16,386)( 17,385)
( 18,384)( 19,383)( 20,382)( 21,381)( 22,380)( 23,379)( 24,378)( 25,377)
( 26,376)( 27,375)( 28,374)( 29,373)( 30,372)( 31,371)( 32,370)( 33,369)
( 34,368)( 35,367)( 36,366)( 37,365)( 38,364)( 39,363)( 40,362)( 41,361)
( 42,360)( 43,359)( 44,358)( 45,357)( 46,356)( 47,355)( 48,354)( 49,353)
( 50,352)( 51,351)( 52,350)( 53,349)( 54,348)( 55,347)( 56,346)( 57,345)
( 58,344)( 59,343)( 60,342)( 61,341)( 62,340)( 63,339)( 64,338)( 65,337)
( 66,336)( 67,335)( 68,334)( 69,333)( 70,332)( 71,331)( 72,330)( 73,329)
( 74,328)( 75,327)( 76,326)( 77,325)( 78,324)( 79,323)( 80,322)( 81,321)
( 82,241)( 83,240)( 84,318)( 85,317)( 86,316)( 87,315)( 88,314)( 89,313)
( 90,312)( 91,311)( 92,310)( 93,309)( 94,308)( 95,307)( 96,306)( 97,305)
( 98,304)( 99,303)(100,302)(101,301)(102,300)(103,299)(104,298)(105,297)
(106,296)(107,295)(108,294)(109,293)(110,292)(111,291)(112,290)(113,289)
(114,288)(115,287)(116,286)(117,285)(118,284)(119,283)(120,282)(121,281)
(122,280)(123,279)(124,278)(125,277)(126,276)(127,275)(128,274)(129,273)
(130,272)(131,271)(132,270)(133,269)(134,268)(135,267)(136,266)(137,265)
(138,264)(139,263)(140,262)(141,261)(142,260)(143,259)(144,258)(145,257)
(146,256)(147,255)(148,254)(149,253)(150,252)(151,251)(152,250)(153,249)
(154,248)(155,247)(156,246)(157,245)(158,244)(159,243)(160,242)(161,399)
(162,398)(163,476)(164,475)(165,474)(166,473)(167,472)(168,471)(169,470)
(170,469)(171,468)(172,467)(173,466)(174,465)(175,464)(176,463)(177,462)
(178,461)(179,460)(180,459)(181,458)(182,457)(183,456)(184,455)(185,454)
(186,453)(187,452)(188,451)(189,450)(190,449)(191,448)(192,447)(193,446)
(194,445)(195,444)(196,443)(197,442)(198,441)(199,440)(200,439)(201,438)
(202,437)(203,436)(204,435)(205,434)(206,433)(207,432)(208,431)(209,430)
(210,429)(211,428)(212,427)(213,426)(214,425)(215,424)(216,423)(217,422)
(218,421)(219,420)(220,419)(221,418)(222,417)(223,416)(224,415)(225,414)
(226,413)(227,412)(228,411)(229,410)(230,409)(231,408)(232,407)(233,406)
(234,405)(235,404)(236,403)(237,402)(238,401)(239,400);
poly := sub<Sym(476)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope