include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {474,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {474,2}*1896
if this polytope has a name.
Group : SmallGroup(1896,53)
Rank : 3
Schlafli Type : {474,2}
Number of vertices, edges, etc : 474, 474, 2
Order of s0s1s2 : 474
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {237,2}*948
3-fold quotients : {158,2}*632
6-fold quotients : {79,2}*316
79-fold quotients : {6,2}*24
158-fold quotients : {3,2}*12
237-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 79)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)( 9, 72)
( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 67)( 15, 66)( 16, 65)( 17, 64)
( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)( 25, 56)
( 26, 55)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 50)( 32, 49)( 33, 48)
( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)( 80,159)
( 81,237)( 82,236)( 83,235)( 84,234)( 85,233)( 86,232)( 87,231)( 88,230)
( 89,229)( 90,228)( 91,227)( 92,226)( 93,225)( 94,224)( 95,223)( 96,222)
( 97,221)( 98,220)( 99,219)(100,218)(101,217)(102,216)(103,215)(104,214)
(105,213)(106,212)(107,211)(108,210)(109,209)(110,208)(111,207)(112,206)
(113,205)(114,204)(115,203)(116,202)(117,201)(118,200)(119,199)(120,198)
(121,197)(122,196)(123,195)(124,194)(125,193)(126,192)(127,191)(128,190)
(129,189)(130,188)(131,187)(132,186)(133,185)(134,184)(135,183)(136,182)
(137,181)(138,180)(139,179)(140,178)(141,177)(142,176)(143,175)(144,174)
(145,173)(146,172)(147,171)(148,170)(149,169)(150,168)(151,167)(152,166)
(153,165)(154,164)(155,163)(156,162)(157,161)(158,160)(239,316)(240,315)
(241,314)(242,313)(243,312)(244,311)(245,310)(246,309)(247,308)(248,307)
(249,306)(250,305)(251,304)(252,303)(253,302)(254,301)(255,300)(256,299)
(257,298)(258,297)(259,296)(260,295)(261,294)(262,293)(263,292)(264,291)
(265,290)(266,289)(267,288)(268,287)(269,286)(270,285)(271,284)(272,283)
(273,282)(274,281)(275,280)(276,279)(277,278)(317,396)(318,474)(319,473)
(320,472)(321,471)(322,470)(323,469)(324,468)(325,467)(326,466)(327,465)
(328,464)(329,463)(330,462)(331,461)(332,460)(333,459)(334,458)(335,457)
(336,456)(337,455)(338,454)(339,453)(340,452)(341,451)(342,450)(343,449)
(344,448)(345,447)(346,446)(347,445)(348,444)(349,443)(350,442)(351,441)
(352,440)(353,439)(354,438)(355,437)(356,436)(357,435)(358,434)(359,433)
(360,432)(361,431)(362,430)(363,429)(364,428)(365,427)(366,426)(367,425)
(368,424)(369,423)(370,422)(371,421)(372,420)(373,419)(374,418)(375,417)
(376,416)(377,415)(378,414)(379,413)(380,412)(381,411)(382,410)(383,409)
(384,408)(385,407)(386,406)(387,405)(388,404)(389,403)(390,402)(391,401)
(392,400)(393,399)(394,398)(395,397);;
s1 := ( 1,318)( 2,317)( 3,395)( 4,394)( 5,393)( 6,392)( 7,391)( 8,390)
( 9,389)( 10,388)( 11,387)( 12,386)( 13,385)( 14,384)( 15,383)( 16,382)
( 17,381)( 18,380)( 19,379)( 20,378)( 21,377)( 22,376)( 23,375)( 24,374)
( 25,373)( 26,372)( 27,371)( 28,370)( 29,369)( 30,368)( 31,367)( 32,366)
( 33,365)( 34,364)( 35,363)( 36,362)( 37,361)( 38,360)( 39,359)( 40,358)
( 41,357)( 42,356)( 43,355)( 44,354)( 45,353)( 46,352)( 47,351)( 48,350)
( 49,349)( 50,348)( 51,347)( 52,346)( 53,345)( 54,344)( 55,343)( 56,342)
( 57,341)( 58,340)( 59,339)( 60,338)( 61,337)( 62,336)( 63,335)( 64,334)
( 65,333)( 66,332)( 67,331)( 68,330)( 69,329)( 70,328)( 71,327)( 72,326)
( 73,325)( 74,324)( 75,323)( 76,322)( 77,321)( 78,320)( 79,319)( 80,239)
( 81,238)( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,310)
( 89,309)( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)
( 97,301)( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)
(105,293)(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)
(113,285)(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)(120,278)
(121,277)(122,276)(123,275)(124,274)(125,273)(126,272)(127,271)(128,270)
(129,269)(130,268)(131,267)(132,266)(133,265)(134,264)(135,263)(136,262)
(137,261)(138,260)(139,259)(140,258)(141,257)(142,256)(143,255)(144,254)
(145,253)(146,252)(147,251)(148,250)(149,249)(150,248)(151,247)(152,246)
(153,245)(154,244)(155,243)(156,242)(157,241)(158,240)(159,397)(160,396)
(161,474)(162,473)(163,472)(164,471)(165,470)(166,469)(167,468)(168,467)
(169,466)(170,465)(171,464)(172,463)(173,462)(174,461)(175,460)(176,459)
(177,458)(178,457)(179,456)(180,455)(181,454)(182,453)(183,452)(184,451)
(185,450)(186,449)(187,448)(188,447)(189,446)(190,445)(191,444)(192,443)
(193,442)(194,441)(195,440)(196,439)(197,438)(198,437)(199,436)(200,435)
(201,434)(202,433)(203,432)(204,431)(205,430)(206,429)(207,428)(208,427)
(209,426)(210,425)(211,424)(212,423)(213,422)(214,421)(215,420)(216,419)
(217,418)(218,417)(219,416)(220,415)(221,414)(222,413)(223,412)(224,411)
(225,410)(226,409)(227,408)(228,407)(229,406)(230,405)(231,404)(232,403)
(233,402)(234,401)(235,400)(236,399)(237,398);;
s2 := (475,476);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(476)!( 2, 79)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)
( 9, 72)( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 67)( 15, 66)( 16, 65)
( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)
( 25, 56)( 26, 55)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 50)( 32, 49)
( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)
( 80,159)( 81,237)( 82,236)( 83,235)( 84,234)( 85,233)( 86,232)( 87,231)
( 88,230)( 89,229)( 90,228)( 91,227)( 92,226)( 93,225)( 94,224)( 95,223)
( 96,222)( 97,221)( 98,220)( 99,219)(100,218)(101,217)(102,216)(103,215)
(104,214)(105,213)(106,212)(107,211)(108,210)(109,209)(110,208)(111,207)
(112,206)(113,205)(114,204)(115,203)(116,202)(117,201)(118,200)(119,199)
(120,198)(121,197)(122,196)(123,195)(124,194)(125,193)(126,192)(127,191)
(128,190)(129,189)(130,188)(131,187)(132,186)(133,185)(134,184)(135,183)
(136,182)(137,181)(138,180)(139,179)(140,178)(141,177)(142,176)(143,175)
(144,174)(145,173)(146,172)(147,171)(148,170)(149,169)(150,168)(151,167)
(152,166)(153,165)(154,164)(155,163)(156,162)(157,161)(158,160)(239,316)
(240,315)(241,314)(242,313)(243,312)(244,311)(245,310)(246,309)(247,308)
(248,307)(249,306)(250,305)(251,304)(252,303)(253,302)(254,301)(255,300)
(256,299)(257,298)(258,297)(259,296)(260,295)(261,294)(262,293)(263,292)
(264,291)(265,290)(266,289)(267,288)(268,287)(269,286)(270,285)(271,284)
(272,283)(273,282)(274,281)(275,280)(276,279)(277,278)(317,396)(318,474)
(319,473)(320,472)(321,471)(322,470)(323,469)(324,468)(325,467)(326,466)
(327,465)(328,464)(329,463)(330,462)(331,461)(332,460)(333,459)(334,458)
(335,457)(336,456)(337,455)(338,454)(339,453)(340,452)(341,451)(342,450)
(343,449)(344,448)(345,447)(346,446)(347,445)(348,444)(349,443)(350,442)
(351,441)(352,440)(353,439)(354,438)(355,437)(356,436)(357,435)(358,434)
(359,433)(360,432)(361,431)(362,430)(363,429)(364,428)(365,427)(366,426)
(367,425)(368,424)(369,423)(370,422)(371,421)(372,420)(373,419)(374,418)
(375,417)(376,416)(377,415)(378,414)(379,413)(380,412)(381,411)(382,410)
(383,409)(384,408)(385,407)(386,406)(387,405)(388,404)(389,403)(390,402)
(391,401)(392,400)(393,399)(394,398)(395,397);
s1 := Sym(476)!( 1,318)( 2,317)( 3,395)( 4,394)( 5,393)( 6,392)( 7,391)
( 8,390)( 9,389)( 10,388)( 11,387)( 12,386)( 13,385)( 14,384)( 15,383)
( 16,382)( 17,381)( 18,380)( 19,379)( 20,378)( 21,377)( 22,376)( 23,375)
( 24,374)( 25,373)( 26,372)( 27,371)( 28,370)( 29,369)( 30,368)( 31,367)
( 32,366)( 33,365)( 34,364)( 35,363)( 36,362)( 37,361)( 38,360)( 39,359)
( 40,358)( 41,357)( 42,356)( 43,355)( 44,354)( 45,353)( 46,352)( 47,351)
( 48,350)( 49,349)( 50,348)( 51,347)( 52,346)( 53,345)( 54,344)( 55,343)
( 56,342)( 57,341)( 58,340)( 59,339)( 60,338)( 61,337)( 62,336)( 63,335)
( 64,334)( 65,333)( 66,332)( 67,331)( 68,330)( 69,329)( 70,328)( 71,327)
( 72,326)( 73,325)( 74,324)( 75,323)( 76,322)( 77,321)( 78,320)( 79,319)
( 80,239)( 81,238)( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)
( 88,310)( 89,309)( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)
( 96,302)( 97,301)( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)
(104,294)(105,293)(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)
(112,286)(113,285)(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)
(120,278)(121,277)(122,276)(123,275)(124,274)(125,273)(126,272)(127,271)
(128,270)(129,269)(130,268)(131,267)(132,266)(133,265)(134,264)(135,263)
(136,262)(137,261)(138,260)(139,259)(140,258)(141,257)(142,256)(143,255)
(144,254)(145,253)(146,252)(147,251)(148,250)(149,249)(150,248)(151,247)
(152,246)(153,245)(154,244)(155,243)(156,242)(157,241)(158,240)(159,397)
(160,396)(161,474)(162,473)(163,472)(164,471)(165,470)(166,469)(167,468)
(168,467)(169,466)(170,465)(171,464)(172,463)(173,462)(174,461)(175,460)
(176,459)(177,458)(178,457)(179,456)(180,455)(181,454)(182,453)(183,452)
(184,451)(185,450)(186,449)(187,448)(188,447)(189,446)(190,445)(191,444)
(192,443)(193,442)(194,441)(195,440)(196,439)(197,438)(198,437)(199,436)
(200,435)(201,434)(202,433)(203,432)(204,431)(205,430)(206,429)(207,428)
(208,427)(209,426)(210,425)(211,424)(212,423)(213,422)(214,421)(215,420)
(216,419)(217,418)(218,417)(219,416)(220,415)(221,414)(222,413)(223,412)
(224,411)(225,410)(226,409)(227,408)(228,407)(229,406)(230,405)(231,404)
(232,403)(233,402)(234,401)(235,400)(236,399)(237,398);
s2 := Sym(476)!(475,476);
poly := sub<Sym(476)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope