include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {238,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {238,4}*1904
Also Known As : {238,4|2}. if this polytope has another name.
Group : SmallGroup(1904,162)
Rank : 3
Schlafli Type : {238,4}
Number of vertices, edges, etc : 238, 476, 4
Order of s0s1s2 : 476
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {238,2}*952
4-fold quotients : {119,2}*476
7-fold quotients : {34,4}*272
14-fold quotients : {34,2}*136
17-fold quotients : {14,4}*112
28-fold quotients : {17,2}*68
34-fold quotients : {14,2}*56
68-fold quotients : {7,2}*28
119-fold quotients : {2,4}*16
238-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)
( 18,103)( 19,119)( 20,118)( 21,117)( 22,116)( 23,115)( 24,114)( 25,113)
( 26,112)( 27,111)( 28,110)( 29,109)( 30,108)( 31,107)( 32,106)( 33,105)
( 34,104)( 35, 86)( 36,102)( 37,101)( 38,100)( 39, 99)( 40, 98)( 41, 97)
( 42, 96)( 43, 95)( 44, 94)( 45, 93)( 46, 92)( 47, 91)( 48, 90)( 49, 89)
( 50, 88)( 51, 87)( 52, 69)( 53, 85)( 54, 84)( 55, 83)( 56, 82)( 57, 81)
( 58, 80)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)( 65, 73)
( 66, 72)( 67, 71)( 68, 70)(121,136)(122,135)(123,134)(124,133)(125,132)
(126,131)(127,130)(128,129)(137,222)(138,238)(139,237)(140,236)(141,235)
(142,234)(143,233)(144,232)(145,231)(146,230)(147,229)(148,228)(149,227)
(150,226)(151,225)(152,224)(153,223)(154,205)(155,221)(156,220)(157,219)
(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)(164,212)(165,211)
(166,210)(167,209)(168,208)(169,207)(170,206)(171,188)(172,204)(173,203)
(174,202)(175,201)(176,200)(177,199)(178,198)(179,197)(180,196)(181,195)
(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)(240,255)(241,254)
(242,253)(243,252)(244,251)(245,250)(246,249)(247,248)(256,341)(257,357)
(258,356)(259,355)(260,354)(261,353)(262,352)(263,351)(264,350)(265,349)
(266,348)(267,347)(268,346)(269,345)(270,344)(271,343)(272,342)(273,324)
(274,340)(275,339)(276,338)(277,337)(278,336)(279,335)(280,334)(281,333)
(282,332)(283,331)(284,330)(285,329)(286,328)(287,327)(288,326)(289,325)
(290,307)(291,323)(292,322)(293,321)(294,320)(295,319)(296,318)(297,317)
(298,316)(299,315)(300,314)(301,313)(302,312)(303,311)(304,310)(305,309)
(306,308)(359,374)(360,373)(361,372)(362,371)(363,370)(364,369)(365,368)
(366,367)(375,460)(376,476)(377,475)(378,474)(379,473)(380,472)(381,471)
(382,470)(383,469)(384,468)(385,467)(386,466)(387,465)(388,464)(389,463)
(390,462)(391,461)(392,443)(393,459)(394,458)(395,457)(396,456)(397,455)
(398,454)(399,453)(400,452)(401,451)(402,450)(403,449)(404,448)(405,447)
(406,446)(407,445)(408,444)(409,426)(410,442)(411,441)(412,440)(413,439)
(414,438)(415,437)(416,436)(417,435)(418,434)(419,433)(420,432)(421,431)
(422,430)(423,429)(424,428)(425,427);;
s1 := ( 1, 19)( 2, 18)( 3, 34)( 4, 33)( 5, 32)( 6, 31)( 7, 30)( 8, 29)
( 9, 28)( 10, 27)( 11, 26)( 12, 25)( 13, 24)( 14, 23)( 15, 22)( 16, 21)
( 17, 20)( 35,104)( 36,103)( 37,119)( 38,118)( 39,117)( 40,116)( 41,115)
( 42,114)( 43,113)( 44,112)( 45,111)( 46,110)( 47,109)( 48,108)( 49,107)
( 50,106)( 51,105)( 52, 87)( 53, 86)( 54,102)( 55,101)( 56,100)( 57, 99)
( 58, 98)( 59, 97)( 60, 96)( 61, 95)( 62, 94)( 63, 93)( 64, 92)( 65, 91)
( 66, 90)( 67, 89)( 68, 88)( 69, 70)( 71, 85)( 72, 84)( 73, 83)( 74, 82)
( 75, 81)( 76, 80)( 77, 79)(120,138)(121,137)(122,153)(123,152)(124,151)
(125,150)(126,149)(127,148)(128,147)(129,146)(130,145)(131,144)(132,143)
(133,142)(134,141)(135,140)(136,139)(154,223)(155,222)(156,238)(157,237)
(158,236)(159,235)(160,234)(161,233)(162,232)(163,231)(164,230)(165,229)
(166,228)(167,227)(168,226)(169,225)(170,224)(171,206)(172,205)(173,221)
(174,220)(175,219)(176,218)(177,217)(178,216)(179,215)(180,214)(181,213)
(182,212)(183,211)(184,210)(185,209)(186,208)(187,207)(188,189)(190,204)
(191,203)(192,202)(193,201)(194,200)(195,199)(196,198)(239,376)(240,375)
(241,391)(242,390)(243,389)(244,388)(245,387)(246,386)(247,385)(248,384)
(249,383)(250,382)(251,381)(252,380)(253,379)(254,378)(255,377)(256,359)
(257,358)(258,374)(259,373)(260,372)(261,371)(262,370)(263,369)(264,368)
(265,367)(266,366)(267,365)(268,364)(269,363)(270,362)(271,361)(272,360)
(273,461)(274,460)(275,476)(276,475)(277,474)(278,473)(279,472)(280,471)
(281,470)(282,469)(283,468)(284,467)(285,466)(286,465)(287,464)(288,463)
(289,462)(290,444)(291,443)(292,459)(293,458)(294,457)(295,456)(296,455)
(297,454)(298,453)(299,452)(300,451)(301,450)(302,449)(303,448)(304,447)
(305,446)(306,445)(307,427)(308,426)(309,442)(310,441)(311,440)(312,439)
(313,438)(314,437)(315,436)(316,435)(317,434)(318,433)(319,432)(320,431)
(321,430)(322,429)(323,428)(324,410)(325,409)(326,425)(327,424)(328,423)
(329,422)(330,421)(331,420)(332,419)(333,418)(334,417)(335,416)(336,415)
(337,414)(338,413)(339,412)(340,411)(341,393)(342,392)(343,408)(344,407)
(345,406)(346,405)(347,404)(348,403)(349,402)(350,401)(351,400)(352,399)
(353,398)(354,397)(355,396)(356,395)(357,394);;
s2 := ( 1,239)( 2,240)( 3,241)( 4,242)( 5,243)( 6,244)( 7,245)( 8,246)
( 9,247)( 10,248)( 11,249)( 12,250)( 13,251)( 14,252)( 15,253)( 16,254)
( 17,255)( 18,256)( 19,257)( 20,258)( 21,259)( 22,260)( 23,261)( 24,262)
( 25,263)( 26,264)( 27,265)( 28,266)( 29,267)( 30,268)( 31,269)( 32,270)
( 33,271)( 34,272)( 35,273)( 36,274)( 37,275)( 38,276)( 39,277)( 40,278)
( 41,279)( 42,280)( 43,281)( 44,282)( 45,283)( 46,284)( 47,285)( 48,286)
( 49,287)( 50,288)( 51,289)( 52,290)( 53,291)( 54,292)( 55,293)( 56,294)
( 57,295)( 58,296)( 59,297)( 60,298)( 61,299)( 62,300)( 63,301)( 64,302)
( 65,303)( 66,304)( 67,305)( 68,306)( 69,307)( 70,308)( 71,309)( 72,310)
( 73,311)( 74,312)( 75,313)( 76,314)( 77,315)( 78,316)( 79,317)( 80,318)
( 81,319)( 82,320)( 83,321)( 84,322)( 85,323)( 86,324)( 87,325)( 88,326)
( 89,327)( 90,328)( 91,329)( 92,330)( 93,331)( 94,332)( 95,333)( 96,334)
( 97,335)( 98,336)( 99,337)(100,338)(101,339)(102,340)(103,341)(104,342)
(105,343)(106,344)(107,345)(108,346)(109,347)(110,348)(111,349)(112,350)
(113,351)(114,352)(115,353)(116,354)(117,355)(118,356)(119,357)(120,358)
(121,359)(122,360)(123,361)(124,362)(125,363)(126,364)(127,365)(128,366)
(129,367)(130,368)(131,369)(132,370)(133,371)(134,372)(135,373)(136,374)
(137,375)(138,376)(139,377)(140,378)(141,379)(142,380)(143,381)(144,382)
(145,383)(146,384)(147,385)(148,386)(149,387)(150,388)(151,389)(152,390)
(153,391)(154,392)(155,393)(156,394)(157,395)(158,396)(159,397)(160,398)
(161,399)(162,400)(163,401)(164,402)(165,403)(166,404)(167,405)(168,406)
(169,407)(170,408)(171,409)(172,410)(173,411)(174,412)(175,413)(176,414)
(177,415)(178,416)(179,417)(180,418)(181,419)(182,420)(183,421)(184,422)
(185,423)(186,424)(187,425)(188,426)(189,427)(190,428)(191,429)(192,430)
(193,431)(194,432)(195,433)(196,434)(197,435)(198,436)(199,437)(200,438)
(201,439)(202,440)(203,441)(204,442)(205,443)(206,444)(207,445)(208,446)
(209,447)(210,448)(211,449)(212,450)(213,451)(214,452)(215,453)(216,454)
(217,455)(218,456)(219,457)(220,458)(221,459)(222,460)(223,461)(224,462)
(225,463)(226,464)(227,465)(228,466)(229,467)(230,468)(231,469)(232,470)
(233,471)(234,472)(235,473)(236,474)(237,475)(238,476);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(476)!( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)
( 9, 10)( 18,103)( 19,119)( 20,118)( 21,117)( 22,116)( 23,115)( 24,114)
( 25,113)( 26,112)( 27,111)( 28,110)( 29,109)( 30,108)( 31,107)( 32,106)
( 33,105)( 34,104)( 35, 86)( 36,102)( 37,101)( 38,100)( 39, 99)( 40, 98)
( 41, 97)( 42, 96)( 43, 95)( 44, 94)( 45, 93)( 46, 92)( 47, 91)( 48, 90)
( 49, 89)( 50, 88)( 51, 87)( 52, 69)( 53, 85)( 54, 84)( 55, 83)( 56, 82)
( 57, 81)( 58, 80)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)
( 65, 73)( 66, 72)( 67, 71)( 68, 70)(121,136)(122,135)(123,134)(124,133)
(125,132)(126,131)(127,130)(128,129)(137,222)(138,238)(139,237)(140,236)
(141,235)(142,234)(143,233)(144,232)(145,231)(146,230)(147,229)(148,228)
(149,227)(150,226)(151,225)(152,224)(153,223)(154,205)(155,221)(156,220)
(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)(164,212)
(165,211)(166,210)(167,209)(168,208)(169,207)(170,206)(171,188)(172,204)
(173,203)(174,202)(175,201)(176,200)(177,199)(178,198)(179,197)(180,196)
(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)(240,255)
(241,254)(242,253)(243,252)(244,251)(245,250)(246,249)(247,248)(256,341)
(257,357)(258,356)(259,355)(260,354)(261,353)(262,352)(263,351)(264,350)
(265,349)(266,348)(267,347)(268,346)(269,345)(270,344)(271,343)(272,342)
(273,324)(274,340)(275,339)(276,338)(277,337)(278,336)(279,335)(280,334)
(281,333)(282,332)(283,331)(284,330)(285,329)(286,328)(287,327)(288,326)
(289,325)(290,307)(291,323)(292,322)(293,321)(294,320)(295,319)(296,318)
(297,317)(298,316)(299,315)(300,314)(301,313)(302,312)(303,311)(304,310)
(305,309)(306,308)(359,374)(360,373)(361,372)(362,371)(363,370)(364,369)
(365,368)(366,367)(375,460)(376,476)(377,475)(378,474)(379,473)(380,472)
(381,471)(382,470)(383,469)(384,468)(385,467)(386,466)(387,465)(388,464)
(389,463)(390,462)(391,461)(392,443)(393,459)(394,458)(395,457)(396,456)
(397,455)(398,454)(399,453)(400,452)(401,451)(402,450)(403,449)(404,448)
(405,447)(406,446)(407,445)(408,444)(409,426)(410,442)(411,441)(412,440)
(413,439)(414,438)(415,437)(416,436)(417,435)(418,434)(419,433)(420,432)
(421,431)(422,430)(423,429)(424,428)(425,427);
s1 := Sym(476)!( 1, 19)( 2, 18)( 3, 34)( 4, 33)( 5, 32)( 6, 31)( 7, 30)
( 8, 29)( 9, 28)( 10, 27)( 11, 26)( 12, 25)( 13, 24)( 14, 23)( 15, 22)
( 16, 21)( 17, 20)( 35,104)( 36,103)( 37,119)( 38,118)( 39,117)( 40,116)
( 41,115)( 42,114)( 43,113)( 44,112)( 45,111)( 46,110)( 47,109)( 48,108)
( 49,107)( 50,106)( 51,105)( 52, 87)( 53, 86)( 54,102)( 55,101)( 56,100)
( 57, 99)( 58, 98)( 59, 97)( 60, 96)( 61, 95)( 62, 94)( 63, 93)( 64, 92)
( 65, 91)( 66, 90)( 67, 89)( 68, 88)( 69, 70)( 71, 85)( 72, 84)( 73, 83)
( 74, 82)( 75, 81)( 76, 80)( 77, 79)(120,138)(121,137)(122,153)(123,152)
(124,151)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145)(131,144)
(132,143)(133,142)(134,141)(135,140)(136,139)(154,223)(155,222)(156,238)
(157,237)(158,236)(159,235)(160,234)(161,233)(162,232)(163,231)(164,230)
(165,229)(166,228)(167,227)(168,226)(169,225)(170,224)(171,206)(172,205)
(173,221)(174,220)(175,219)(176,218)(177,217)(178,216)(179,215)(180,214)
(181,213)(182,212)(183,211)(184,210)(185,209)(186,208)(187,207)(188,189)
(190,204)(191,203)(192,202)(193,201)(194,200)(195,199)(196,198)(239,376)
(240,375)(241,391)(242,390)(243,389)(244,388)(245,387)(246,386)(247,385)
(248,384)(249,383)(250,382)(251,381)(252,380)(253,379)(254,378)(255,377)
(256,359)(257,358)(258,374)(259,373)(260,372)(261,371)(262,370)(263,369)
(264,368)(265,367)(266,366)(267,365)(268,364)(269,363)(270,362)(271,361)
(272,360)(273,461)(274,460)(275,476)(276,475)(277,474)(278,473)(279,472)
(280,471)(281,470)(282,469)(283,468)(284,467)(285,466)(286,465)(287,464)
(288,463)(289,462)(290,444)(291,443)(292,459)(293,458)(294,457)(295,456)
(296,455)(297,454)(298,453)(299,452)(300,451)(301,450)(302,449)(303,448)
(304,447)(305,446)(306,445)(307,427)(308,426)(309,442)(310,441)(311,440)
(312,439)(313,438)(314,437)(315,436)(316,435)(317,434)(318,433)(319,432)
(320,431)(321,430)(322,429)(323,428)(324,410)(325,409)(326,425)(327,424)
(328,423)(329,422)(330,421)(331,420)(332,419)(333,418)(334,417)(335,416)
(336,415)(337,414)(338,413)(339,412)(340,411)(341,393)(342,392)(343,408)
(344,407)(345,406)(346,405)(347,404)(348,403)(349,402)(350,401)(351,400)
(352,399)(353,398)(354,397)(355,396)(356,395)(357,394);
s2 := Sym(476)!( 1,239)( 2,240)( 3,241)( 4,242)( 5,243)( 6,244)( 7,245)
( 8,246)( 9,247)( 10,248)( 11,249)( 12,250)( 13,251)( 14,252)( 15,253)
( 16,254)( 17,255)( 18,256)( 19,257)( 20,258)( 21,259)( 22,260)( 23,261)
( 24,262)( 25,263)( 26,264)( 27,265)( 28,266)( 29,267)( 30,268)( 31,269)
( 32,270)( 33,271)( 34,272)( 35,273)( 36,274)( 37,275)( 38,276)( 39,277)
( 40,278)( 41,279)( 42,280)( 43,281)( 44,282)( 45,283)( 46,284)( 47,285)
( 48,286)( 49,287)( 50,288)( 51,289)( 52,290)( 53,291)( 54,292)( 55,293)
( 56,294)( 57,295)( 58,296)( 59,297)( 60,298)( 61,299)( 62,300)( 63,301)
( 64,302)( 65,303)( 66,304)( 67,305)( 68,306)( 69,307)( 70,308)( 71,309)
( 72,310)( 73,311)( 74,312)( 75,313)( 76,314)( 77,315)( 78,316)( 79,317)
( 80,318)( 81,319)( 82,320)( 83,321)( 84,322)( 85,323)( 86,324)( 87,325)
( 88,326)( 89,327)( 90,328)( 91,329)( 92,330)( 93,331)( 94,332)( 95,333)
( 96,334)( 97,335)( 98,336)( 99,337)(100,338)(101,339)(102,340)(103,341)
(104,342)(105,343)(106,344)(107,345)(108,346)(109,347)(110,348)(111,349)
(112,350)(113,351)(114,352)(115,353)(116,354)(117,355)(118,356)(119,357)
(120,358)(121,359)(122,360)(123,361)(124,362)(125,363)(126,364)(127,365)
(128,366)(129,367)(130,368)(131,369)(132,370)(133,371)(134,372)(135,373)
(136,374)(137,375)(138,376)(139,377)(140,378)(141,379)(142,380)(143,381)
(144,382)(145,383)(146,384)(147,385)(148,386)(149,387)(150,388)(151,389)
(152,390)(153,391)(154,392)(155,393)(156,394)(157,395)(158,396)(159,397)
(160,398)(161,399)(162,400)(163,401)(164,402)(165,403)(166,404)(167,405)
(168,406)(169,407)(170,408)(171,409)(172,410)(173,411)(174,412)(175,413)
(176,414)(177,415)(178,416)(179,417)(180,418)(181,419)(182,420)(183,421)
(184,422)(185,423)(186,424)(187,425)(188,426)(189,427)(190,428)(191,429)
(192,430)(193,431)(194,432)(195,433)(196,434)(197,435)(198,436)(199,437)
(200,438)(201,439)(202,440)(203,441)(204,442)(205,443)(206,444)(207,445)
(208,446)(209,447)(210,448)(211,449)(212,450)(213,451)(214,452)(215,453)
(216,454)(217,455)(218,456)(219,457)(220,458)(221,459)(222,460)(223,461)
(224,462)(225,463)(226,464)(227,465)(228,466)(229,467)(230,468)(231,469)
(232,470)(233,471)(234,472)(235,473)(236,474)(237,475)(238,476);
poly := sub<Sym(476)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope