include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,40,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,40,4}*1920b
if this polytope has a name.
Group : SmallGroup(1920,150684)
Rank : 5
Schlafli Type : {3,2,40,4}
Number of vertices, edges, etc : 3, 3, 40, 80, 4
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,20,4}*960
4-fold quotients : {3,2,20,2}*480, {3,2,10,4}*480
5-fold quotients : {3,2,8,4}*384b
8-fold quotients : {3,2,10,2}*240
10-fold quotients : {3,2,4,4}*192
16-fold quotients : {3,2,5,2}*120
20-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
40-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 8)( 6, 7)(10,13)(11,12)(14,19)(15,23)(16,22)(17,21)(18,20)(25,28)
(26,27)(30,33)(31,32)(34,39)(35,43)(36,42)(37,41)(38,40)(44,79)(45,83)(46,82)
(47,81)(48,80)(49,74)(50,78)(51,77)(52,76)(53,75)(54,64)(55,68)(56,67)(57,66)
(58,65)(59,69)(60,73)(61,72)(62,71)(63,70);;
s3 := ( 4,45)( 5,44)( 6,48)( 7,47)( 8,46)( 9,50)(10,49)(11,53)(12,52)(13,51)
(14,55)(15,54)(16,58)(17,57)(18,56)(19,60)(20,59)(21,63)(22,62)(23,61)(24,70)
(25,69)(26,73)(27,72)(28,71)(29,65)(30,64)(31,68)(32,67)(33,66)(34,80)(35,79)
(36,83)(37,82)(38,81)(39,75)(40,74)(41,78)(42,77)(43,76);;
s4 := (24,29)(25,30)(26,31)(27,32)(28,33)(34,39)(35,40)(36,41)(37,42)(38,43)
(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)(64,79)
(65,80)(66,81)(67,82)(68,83)(69,74)(70,75)(71,76)(72,77)(73,78);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s4*s3*s4*s3*s2*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s4*s3*s2*s3*s2*s4*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(83)!(2,3);
s1 := Sym(83)!(1,2);
s2 := Sym(83)!( 5, 8)( 6, 7)(10,13)(11,12)(14,19)(15,23)(16,22)(17,21)(18,20)
(25,28)(26,27)(30,33)(31,32)(34,39)(35,43)(36,42)(37,41)(38,40)(44,79)(45,83)
(46,82)(47,81)(48,80)(49,74)(50,78)(51,77)(52,76)(53,75)(54,64)(55,68)(56,67)
(57,66)(58,65)(59,69)(60,73)(61,72)(62,71)(63,70);
s3 := Sym(83)!( 4,45)( 5,44)( 6,48)( 7,47)( 8,46)( 9,50)(10,49)(11,53)(12,52)
(13,51)(14,55)(15,54)(16,58)(17,57)(18,56)(19,60)(20,59)(21,63)(22,62)(23,61)
(24,70)(25,69)(26,73)(27,72)(28,71)(29,65)(30,64)(31,68)(32,67)(33,66)(34,80)
(35,79)(36,83)(37,82)(38,81)(39,75)(40,74)(41,78)(42,77)(43,76);
s4 := Sym(83)!(24,29)(25,30)(26,31)(27,32)(28,33)(34,39)(35,40)(36,41)(37,42)
(38,43)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(51,61)(52,62)(53,63)
(64,79)(65,80)(66,81)(67,82)(68,83)(69,74)(70,75)(71,76)(72,77)(73,78);
poly := sub<Sym(83)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s4*s3*s4*s3*s2*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s4*s3*s2*s3*s2*s4*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope