Polytope of Type {10,16,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,16,2,3}*1920
if this polytope has a name.
Group : SmallGroup(1920,203901)
Rank : 5
Schlafli Type : {10,16,2,3}
Number of vertices, edges, etc : 10, 80, 16, 3, 3
Order of s0s1s2s3s4 : 240
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,8,2,3}*960
   4-fold quotients : {10,4,2,3}*480
   5-fold quotients : {2,16,2,3}*384
   8-fold quotients : {10,2,2,3}*240
   10-fold quotients : {2,8,2,3}*192
   16-fold quotients : {5,2,2,3}*120
   20-fold quotients : {2,4,2,3}*96
   40-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)
(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)
(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)
(78,79);;
s1 := ( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,17)(12,16)(13,20)(14,19)(15,18)(21,32)
(22,31)(23,35)(24,34)(25,33)(26,37)(27,36)(28,40)(29,39)(30,38)(41,62)(42,61)
(43,65)(44,64)(45,63)(46,67)(47,66)(48,70)(49,69)(50,68)(51,77)(52,76)(53,80)
(54,79)(55,78)(56,72)(57,71)(58,75)(59,74)(60,73);;
s2 := ( 1,41)( 2,42)( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,49)(10,50)
(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,71)
(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)
(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70);;
s3 := (82,83);;
s4 := (81,82);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(83)!( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)
(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)
(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)
(78,79);
s1 := Sym(83)!( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,17)(12,16)(13,20)(14,19)(15,18)
(21,32)(22,31)(23,35)(24,34)(25,33)(26,37)(27,36)(28,40)(29,39)(30,38)(41,62)
(42,61)(43,65)(44,64)(45,63)(46,67)(47,66)(48,70)(49,69)(50,68)(51,77)(52,76)
(53,80)(54,79)(55,78)(56,72)(57,71)(58,75)(59,74)(60,73);
s2 := Sym(83)!( 1,41)( 2,42)( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,49)
(10,50)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)
(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)
(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70);
s3 := Sym(83)!(82,83);
s4 := Sym(83)!(81,82);
poly := sub<Sym(83)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope