include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {16,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,2,3}*192
if this polytope has a name.
Group : SmallGroup(192,469)
Rank : 4
Schlafli Type : {16,2,3}
Number of vertices, edges, etc : 16, 16, 3, 3
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{16,2,3,2} of size 384
{16,2,3,3} of size 768
{16,2,3,4} of size 768
{16,2,3,6} of size 1152
{16,2,3,5} of size 1920
Vertex Figure Of :
{2,16,2,3} of size 384
{4,16,2,3} of size 768
{4,16,2,3} of size 768
{6,16,2,3} of size 1152
{10,16,2,3} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,2,3}*96
4-fold quotients : {4,2,3}*48
8-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {32,2,3}*384, {16,2,6}*384
3-fold covers : {16,2,9}*576, {48,2,3}*576, {16,6,3}*576
4-fold covers : {64,2,3}*768, {16,4,6}*768a, {16,2,12}*768, {32,2,6}*768, {16,4,3}*768
5-fold covers : {80,2,3}*960, {16,2,15}*960
6-fold covers : {32,2,9}*1152, {32,6,3}*1152, {96,2,3}*1152, {16,2,18}*1152, {16,6,6}*1152a, {16,6,6}*1152c, {48,2,6}*1152
7-fold covers : {112,2,3}*1344, {16,2,21}*1344
9-fold covers : {16,2,27}*1728, {144,2,3}*1728, {48,2,9}*1728, {48,6,3}*1728a, {16,6,9}*1728, {16,6,3}*1728a, {48,6,3}*1728b, {16,6,3}*1728b
10-fold covers : {32,2,15}*1920, {160,2,3}*1920, {16,2,30}*1920, {16,10,6}*1920, {80,2,6}*1920
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
s2 := (18,19);;
s3 := (17,18);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(19)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(19)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
s2 := Sym(19)!(18,19);
s3 := Sym(19)!(17,18);
poly := sub<Sym(19)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope