include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,48,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,48,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,203905)
Rank : 5
Schlafli Type : {5,2,48,2}
Number of vertices, edges, etc : 5, 5, 48, 48, 2
Order of s0s1s2s3s4 : 240
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,24,2}*960
3-fold quotients : {5,2,16,2}*640
4-fold quotients : {5,2,12,2}*480
6-fold quotients : {5,2,8,2}*320
8-fold quotients : {5,2,6,2}*240
12-fold quotients : {5,2,4,2}*160
16-fold quotients : {5,2,3,2}*120
24-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10)(11,14)(12,16)(13,15)(17,20)(18,22)(19,21)(23,26)(24,28)
(25,27)(29,32)(30,34)(31,33)(35,38)(36,40)(37,39)(41,44)(42,46)(43,45)(48,51)
(49,50)(52,53);;
s3 := ( 6,12)( 7, 9)( 8,18)(10,13)(11,15)(14,24)(16,19)(17,21)(20,30)(22,25)
(23,27)(26,36)(28,31)(29,33)(32,42)(34,37)(35,39)(38,48)(40,43)(41,45)(44,52)
(46,49)(47,50)(51,53);;
s4 := (54,55);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(55)!(2,3)(4,5);
s1 := Sym(55)!(1,2)(3,4);
s2 := Sym(55)!( 7, 8)( 9,10)(11,14)(12,16)(13,15)(17,20)(18,22)(19,21)(23,26)
(24,28)(25,27)(29,32)(30,34)(31,33)(35,38)(36,40)(37,39)(41,44)(42,46)(43,45)
(48,51)(49,50)(52,53);
s3 := Sym(55)!( 6,12)( 7, 9)( 8,18)(10,13)(11,15)(14,24)(16,19)(17,21)(20,30)
(22,25)(23,27)(26,36)(28,31)(29,33)(32,42)(34,37)(35,39)(38,48)(40,43)(41,45)
(44,52)(46,49)(47,50)(51,53);
s4 := Sym(55)!(54,55);
poly := sub<Sym(55)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope