include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,80,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,80,2,3}*1920
if this polytope has a name.
Group : SmallGroup(1920,203907)
Rank : 5
Schlafli Type : {2,80,2,3}
Number of vertices, edges, etc : 2, 80, 80, 3, 3
Order of s0s1s2s3s4 : 240
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,40,2,3}*960
4-fold quotients : {2,20,2,3}*480
5-fold quotients : {2,16,2,3}*384
8-fold quotients : {2,10,2,3}*240
10-fold quotients : {2,8,2,3}*192
16-fold quotients : {2,5,2,3}*120
20-fold quotients : {2,4,2,3}*96
40-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(13,18)(14,22)(15,21)(16,20)(17,19)(23,33)
(24,37)(25,36)(26,35)(27,34)(28,38)(29,42)(30,41)(31,40)(32,39)(43,63)(44,67)
(45,66)(46,65)(47,64)(48,68)(49,72)(50,71)(51,70)(52,69)(53,78)(54,82)(55,81)
(56,80)(57,79)(58,73)(59,77)(60,76)(61,75)(62,74);;
s2 := ( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)(12,50)
(13,59)(14,58)(15,62)(16,61)(17,60)(18,54)(19,53)(20,57)(21,56)(22,55)(23,74)
(24,73)(25,77)(26,76)(27,75)(28,79)(29,78)(30,82)(31,81)(32,80)(33,64)(34,63)
(35,67)(36,66)(37,65)(38,69)(39,68)(40,72)(41,71)(42,70);;
s3 := (84,85);;
s4 := (83,84);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(85)!(1,2);
s1 := Sym(85)!( 4, 7)( 5, 6)( 9,12)(10,11)(13,18)(14,22)(15,21)(16,20)(17,19)
(23,33)(24,37)(25,36)(26,35)(27,34)(28,38)(29,42)(30,41)(31,40)(32,39)(43,63)
(44,67)(45,66)(46,65)(47,64)(48,68)(49,72)(50,71)(51,70)(52,69)(53,78)(54,82)
(55,81)(56,80)(57,79)(58,73)(59,77)(60,76)(61,75)(62,74);
s2 := Sym(85)!( 3,44)( 4,43)( 5,47)( 6,46)( 7,45)( 8,49)( 9,48)(10,52)(11,51)
(12,50)(13,59)(14,58)(15,62)(16,61)(17,60)(18,54)(19,53)(20,57)(21,56)(22,55)
(23,74)(24,73)(25,77)(26,76)(27,75)(28,79)(29,78)(30,82)(31,81)(32,80)(33,64)
(34,63)(35,67)(36,66)(37,65)(38,69)(39,68)(40,72)(41,71)(42,70);
s3 := Sym(85)!(84,85);
s4 := Sym(85)!(83,84);
poly := sub<Sym(85)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope