include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,12,2,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12,2,5}*1920a
if this polytope has a name.
Group : SmallGroup(1920,205032)
Rank : 6
Schlafli Type : {2,4,12,2,5}
Number of vertices, edges, etc : 2, 4, 24, 12, 5, 5
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,12,2,5}*960, {2,4,6,2,5}*960a
3-fold quotients : {2,4,4,2,5}*640
4-fold quotients : {2,2,6,2,5}*480
6-fold quotients : {2,2,4,2,5}*320, {2,4,2,2,5}*320
8-fold quotients : {2,2,3,2,5}*240
12-fold quotients : {2,2,2,2,5}*160
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 8)( 5,12)(10,17)(11,18)(13,21)(14,22);;
s2 := ( 3, 4)( 5, 9)( 6,11)( 7,10)( 8,16)(12,15)(13,20)(14,19)(17,26)(18,25)
(21,24)(22,23);;
s3 := ( 3, 6)( 4,13)( 5,10)( 8,21)( 9,19)(11,14)(12,17)(15,23)(16,25)(18,22);;
s4 := (28,29)(30,31);;
s5 := (27,28)(29,30);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!(1,2);
s1 := Sym(31)!( 4, 8)( 5,12)(10,17)(11,18)(13,21)(14,22);
s2 := Sym(31)!( 3, 4)( 5, 9)( 6,11)( 7,10)( 8,16)(12,15)(13,20)(14,19)(17,26)
(18,25)(21,24)(22,23);
s3 := Sym(31)!( 3, 6)( 4,13)( 5,10)( 8,21)( 9,19)(11,14)(12,17)(15,23)(16,25)
(18,22);
s4 := Sym(31)!(28,29)(30,31);
s5 := Sym(31)!(27,28)(29,30);
poly := sub<Sym(31)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope