Polytope of Type {2,2,2,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,2,5}*160
if this polytope has a name.
Group : SmallGroup(160,237)
Rank : 6
Schlafli Type : {2,2,2,2,5}
Number of vertices, edges, etc : 2, 2, 2, 2, 5, 5
Order of s0s1s2s3s4s5 : 10
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,2,5,2} of size 320
   {2,2,2,2,5,3} of size 960
   {2,2,2,2,5,5} of size 960
   {2,2,2,2,5,10} of size 1600
   {2,2,2,2,5,4} of size 1920
   {2,2,2,2,5,6} of size 1920
   {2,2,2,2,5,3} of size 1920
   {2,2,2,2,5,5} of size 1920
   {2,2,2,2,5,6} of size 1920
   {2,2,2,2,5,6} of size 1920
   {2,2,2,2,5,10} of size 1920
   {2,2,2,2,5,10} of size 1920
Vertex Figure Of :
   {2,2,2,2,2,5} of size 320
   {3,2,2,2,2,5} of size 480
   {4,2,2,2,2,5} of size 640
   {5,2,2,2,2,5} of size 800
   {6,2,2,2,2,5} of size 960
   {7,2,2,2,2,5} of size 1120
   {8,2,2,2,2,5} of size 1280
   {9,2,2,2,2,5} of size 1440
   {10,2,2,2,2,5} of size 1600
   {11,2,2,2,2,5} of size 1760
   {12,2,2,2,2,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,4,2,5}*320, {2,4,2,2,5}*320, {4,2,2,2,5}*320, {2,2,2,2,10}*320
   3-fold covers : {2,2,6,2,5}*480, {2,6,2,2,5}*480, {6,2,2,2,5}*480, {2,2,2,2,15}*480
   4-fold covers : {2,4,4,2,5}*640, {4,4,2,2,5}*640, {4,2,4,2,5}*640, {2,2,8,2,5}*640, {2,8,2,2,5}*640, {8,2,2,2,5}*640, {2,2,2,2,20}*640, {2,2,2,4,10}*640, {2,2,4,2,10}*640, {2,4,2,2,10}*640, {4,2,2,2,10}*640
   5-fold covers : {2,2,2,2,25}*800, {2,2,2,10,5}*800, {2,2,10,2,5}*800, {2,10,2,2,5}*800, {10,2,2,2,5}*800
   6-fold covers : {2,2,12,2,5}*960, {2,12,2,2,5}*960, {12,2,2,2,5}*960, {2,4,6,2,5}*960a, {2,6,4,2,5}*960a, {4,2,6,2,5}*960, {4,6,2,2,5}*960a, {6,2,4,2,5}*960, {6,4,2,2,5}*960a, {2,2,4,2,15}*960, {2,4,2,2,15}*960, {4,2,2,2,15}*960, {2,2,2,6,10}*960, {2,2,6,2,10}*960, {2,6,2,2,10}*960, {6,2,2,2,10}*960, {2,2,2,2,30}*960
   7-fold covers : {2,2,14,2,5}*1120, {2,14,2,2,5}*1120, {14,2,2,2,5}*1120, {2,2,2,2,35}*1120
   8-fold covers : {4,4,4,2,5}*1280, {2,4,8,2,5}*1280a, {2,8,4,2,5}*1280a, {4,8,2,2,5}*1280a, {8,4,2,2,5}*1280a, {2,4,8,2,5}*1280b, {2,8,4,2,5}*1280b, {4,8,2,2,5}*1280b, {8,4,2,2,5}*1280b, {2,4,4,2,5}*1280, {4,4,2,2,5}*1280, {4,2,8,2,5}*1280, {8,2,4,2,5}*1280, {2,2,16,2,5}*1280, {2,16,2,2,5}*1280, {16,2,2,2,5}*1280, {2,2,4,4,10}*1280, {2,4,4,2,10}*1280, {4,4,2,2,10}*1280, {2,2,2,4,20}*1280, {2,4,2,4,10}*1280, {4,2,2,4,10}*1280, {4,2,4,2,10}*1280, {2,2,4,2,20}*1280, {2,4,2,2,20}*1280, {4,2,2,2,20}*1280, {2,2,2,8,10}*1280, {2,2,8,2,10}*1280, {2,8,2,2,10}*1280, {8,2,2,2,10}*1280, {2,2,2,2,40}*1280
   9-fold covers : {2,2,18,2,5}*1440, {2,18,2,2,5}*1440, {18,2,2,2,5}*1440, {2,2,2,2,45}*1440, {2,6,6,2,5}*1440a, {2,6,6,2,5}*1440b, {2,6,6,2,5}*1440c, {6,2,6,2,5}*1440, {6,6,2,2,5}*1440a, {6,6,2,2,5}*1440b, {6,6,2,2,5}*1440c, {2,2,2,6,15}*1440, {2,2,6,2,15}*1440, {2,6,2,2,15}*1440, {6,2,2,2,15}*1440
   10-fold covers : {2,2,4,2,25}*1600, {2,4,2,2,25}*1600, {4,2,2,2,25}*1600, {2,2,2,2,50}*1600, {2,2,20,2,5}*1600, {2,20,2,2,5}*1600, {20,2,2,2,5}*1600, {2,4,2,10,5}*1600, {2,4,10,2,5}*1600, {2,10,4,2,5}*1600, {4,2,2,10,5}*1600, {4,2,10,2,5}*1600, {4,10,2,2,5}*1600, {10,2,4,2,5}*1600, {10,4,2,2,5}*1600, {2,2,4,10,5}*1600, {2,2,2,10,10}*1600a, {2,2,2,10,10}*1600b, {2,2,10,2,10}*1600, {2,10,2,2,10}*1600, {10,2,2,2,10}*1600
   11-fold covers : {2,2,22,2,5}*1760, {2,22,2,2,5}*1760, {22,2,2,2,5}*1760, {2,2,2,2,55}*1760
   12-fold covers : {2,4,4,2,15}*1920, {4,4,2,2,15}*1920, {4,4,6,2,5}*1920, {6,4,4,2,5}*1920, {2,4,12,2,5}*1920a, {2,12,4,2,5}*1920a, {4,12,2,2,5}*1920a, {12,4,2,2,5}*1920a, {4,2,4,2,15}*1920, {4,6,4,2,5}*1920a, {4,2,12,2,5}*1920, {12,2,4,2,5}*1920, {2,2,8,2,15}*1920, {2,8,2,2,15}*1920, {8,2,2,2,15}*1920, {2,6,8,2,5}*1920, {2,8,6,2,5}*1920, {6,2,8,2,5}*1920, {6,8,2,2,5}*1920, {8,2,6,2,5}*1920, {8,6,2,2,5}*1920, {2,2,24,2,5}*1920, {2,24,2,2,5}*1920, {24,2,2,2,5}*1920, {2,2,2,4,30}*1920a, {2,2,4,2,30}*1920, {2,4,2,2,30}*1920, {4,2,2,2,30}*1920, {2,2,2,2,60}*1920, {2,2,4,6,10}*1920a, {2,2,6,4,10}*1920, {2,4,2,6,10}*1920, {2,4,6,2,10}*1920a, {2,6,2,4,10}*1920, {2,6,4,2,10}*1920a, {4,2,2,6,10}*1920, {4,2,6,2,10}*1920, {4,6,2,2,10}*1920a, {6,2,2,4,10}*1920, {6,2,4,2,10}*1920, {6,4,2,2,10}*1920a, {2,2,2,12,10}*1920, {2,2,12,2,10}*1920, {2,12,2,2,10}*1920, {12,2,2,2,10}*1920, {2,2,2,6,20}*1920a, {2,2,6,2,20}*1920, {2,6,2,2,20}*1920, {6,2,2,2,20}*1920, {2,2,2,6,15}*1920, {2,4,6,2,5}*1920, {2,6,4,2,5}*1920, {2,6,6,2,5}*1920, {4,6,2,2,5}*1920, {6,4,2,2,5}*1920, {6,6,2,2,5}*1920, {2,2,2,4,15}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (7,8);;
s4 := (10,11)(12,13);;
s5 := ( 9,10)(11,12);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!(1,2);
s1 := Sym(13)!(3,4);
s2 := Sym(13)!(5,6);
s3 := Sym(13)!(7,8);
s4 := Sym(13)!(10,11)(12,13);
s5 := Sym(13)!( 9,10)(11,12);
poly := sub<Sym(13)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope