include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,4,2,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,4,2,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,208100)
Rank : 5
Schlafli Type : {30,4,2,4}
Number of vertices, edges, etc : 30, 60, 4, 4, 4
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {30,2,2,4}*960, {30,4,2,2}*960a
3-fold quotients : {10,4,2,4}*640
4-fold quotients : {15,2,2,4}*480, {30,2,2,2}*480
5-fold quotients : {6,4,2,4}*384a
6-fold quotients : {10,2,2,4}*320, {10,4,2,2}*320
8-fold quotients : {15,2,2,2}*240
10-fold quotients : {6,2,2,4}*192, {6,4,2,2}*192a
12-fold quotients : {5,2,2,4}*160, {10,2,2,2}*160
15-fold quotients : {2,4,2,4}*128
20-fold quotients : {3,2,2,4}*96, {6,2,2,2}*96
24-fold quotients : {5,2,2,2}*80
30-fold quotients : {2,2,2,4}*64, {2,4,2,2}*64
40-fold quotients : {3,2,2,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)(21,26)
(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)(40,42)
(47,50)(48,49)(51,56)(52,60)(53,59)(54,58)(55,57);;
s1 := ( 1, 7)( 2, 6)( 3,10)( 4, 9)( 5, 8)(11,12)(13,15)(16,22)(17,21)(18,25)
(19,24)(20,23)(26,27)(28,30)(31,52)(32,51)(33,55)(34,54)(35,53)(36,47)(37,46)
(38,50)(39,49)(40,48)(41,57)(42,56)(43,60)(44,59)(45,58);;
s2 := ( 1,31)( 2,32)( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)
(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)
(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60);;
s3 := (62,63);;
s4 := (61,62)(63,64);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)
(21,26)(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42)(47,50)(48,49)(51,56)(52,60)(53,59)(54,58)(55,57);
s1 := Sym(64)!( 1, 7)( 2, 6)( 3,10)( 4, 9)( 5, 8)(11,12)(13,15)(16,22)(17,21)
(18,25)(19,24)(20,23)(26,27)(28,30)(31,52)(32,51)(33,55)(34,54)(35,53)(36,47)
(37,46)(38,50)(39,49)(40,48)(41,57)(42,56)(43,60)(44,59)(45,58);
s2 := Sym(64)!( 1,31)( 2,32)( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)
(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)
(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60);
s3 := Sym(64)!(62,63);
s4 := Sym(64)!(61,62)(63,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope