include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,2,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,2,2,2}*480
if this polytope has a name.
Group : SmallGroup(480,1212)
Rank : 5
Schlafli Type : {30,2,2,2}
Number of vertices, edges, etc : 30, 30, 2, 2, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{30,2,2,2,2} of size 960
{30,2,2,2,3} of size 1440
{30,2,2,2,4} of size 1920
Vertex Figure Of :
{2,30,2,2,2} of size 960
{4,30,2,2,2} of size 1920
{4,30,2,2,2} of size 1920
{4,30,2,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {15,2,2,2}*240
3-fold quotients : {10,2,2,2}*160
5-fold quotients : {6,2,2,2}*96
6-fold quotients : {5,2,2,2}*80
10-fold quotients : {3,2,2,2}*48
15-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {60,2,2,2}*960, {30,2,2,4}*960, {30,2,4,2}*960, {30,4,2,2}*960a
3-fold covers : {90,2,2,2}*1440, {30,2,2,6}*1440, {30,2,6,2}*1440, {30,6,2,2}*1440b, {30,6,2,2}*1440c
4-fold covers : {30,2,4,4}*1920, {30,4,4,2}*1920, {60,4,2,2}*1920a, {30,4,2,4}*1920a, {60,2,2,4}*1920, {60,2,4,2}*1920, {30,2,2,8}*1920, {30,2,8,2}*1920, {30,8,2,2}*1920, {120,2,2,2}*1920, {30,4,2,2}*1920
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)(21,22)
(23,26)(24,25)(27,30)(28,29);;
s1 := ( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)(14,29)
(15,18)(16,28)(20,25)(22,24)(26,30);;
s2 := (31,32);;
s3 := (33,34);;
s4 := (35,36);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(36)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,14)(12,13)(15,16)(17,20)(18,19)
(21,22)(23,26)(24,25)(27,30)(28,29);
s1 := Sym(36)!( 1,17)( 2,11)( 3, 9)( 4,19)( 5, 7)( 6,27)( 8,13)(10,23)(12,21)
(14,29)(15,18)(16,28)(20,25)(22,24)(26,30);
s2 := Sym(36)!(31,32);
s3 := Sym(36)!(33,34);
s4 := Sym(36)!(35,36);
poly := sub<Sym(36)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope