include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,8,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,8,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 6
Schlafli Type : {3,2,2,8,10}
Number of vertices, edges, etc : 3, 3, 2, 8, 40, 10
Order of s0s1s2s3s4s5 : 120
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,4,10}*960
4-fold quotients : {3,2,2,2,10}*480
5-fold quotients : {3,2,2,8,2}*384
8-fold quotients : {3,2,2,2,5}*240
10-fold quotients : {3,2,2,4,2}*192
20-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := (16,21)(17,22)(18,23)(19,24)(20,25)(26,41)(27,42)(28,43)(29,44)(30,45)
(31,36)(32,37)(33,38)(34,39)(35,40);;
s4 := ( 6,26)( 7,30)( 8,29)( 9,28)(10,27)(11,31)(12,35)(13,34)(14,33)(15,32)
(16,41)(17,45)(18,44)(19,43)(20,42)(21,36)(22,40)(23,39)(24,38)(25,37);;
s5 := ( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)(23,25)(26,27)(28,30)
(31,32)(33,35)(36,37)(38,40)(41,42)(43,45);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s3*s4*s5*s4*s3*s4*s5*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(45)!(2,3);
s1 := Sym(45)!(1,2);
s2 := Sym(45)!(4,5);
s3 := Sym(45)!(16,21)(17,22)(18,23)(19,24)(20,25)(26,41)(27,42)(28,43)(29,44)
(30,45)(31,36)(32,37)(33,38)(34,39)(35,40);
s4 := Sym(45)!( 6,26)( 7,30)( 8,29)( 9,28)(10,27)(11,31)(12,35)(13,34)(14,33)
(15,32)(16,41)(17,45)(18,44)(19,43)(20,42)(21,36)(22,40)(23,39)(24,38)(25,37);
s5 := Sym(45)!( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)(23,25)(26,27)
(28,30)(31,32)(33,35)(36,37)(38,40)(41,42)(43,45);
poly := sub<Sym(45)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s3*s4*s5*s4*s3*s4*s5*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope