include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,2,6,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,6,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 5
Schlafli Type : {8,2,6,10}
Number of vertices, edges, etc : 8, 8, 6, 30, 10
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,2,6,10}*960
3-fold quotients : {8,2,2,10}*640
4-fold quotients : {2,2,6,10}*480
5-fold quotients : {8,2,6,2}*384
6-fold quotients : {8,2,2,5}*320, {4,2,2,10}*320
10-fold quotients : {8,2,3,2}*192, {4,2,6,2}*192
12-fold quotients : {4,2,2,5}*160, {2,2,2,10}*160
15-fold quotients : {8,2,2,2}*128
20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
24-fold quotients : {2,2,2,5}*80
30-fold quotients : {4,2,2,2}*64
40-fold quotients : {2,2,3,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(15,16)(19,21)(20,22)(25,27)(26,28)(31,33)(32,34)(35,37)(36,38);;
s3 := ( 9,11)(10,15)(13,20)(14,19)(17,26)(18,25)(21,22)(23,32)(24,31)(27,28)
(29,36)(30,35)(33,34)(37,38);;
s4 := ( 9,17)(10,13)(11,25)(12,27)(14,29)(15,19)(16,21)(18,23)(20,35)(22,37)
(24,30)(26,31)(28,33)(32,36)(34,38);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!(2,3)(4,5)(6,7);
s1 := Sym(38)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(38)!(11,12)(15,16)(19,21)(20,22)(25,27)(26,28)(31,33)(32,34)(35,37)
(36,38);
s3 := Sym(38)!( 9,11)(10,15)(13,20)(14,19)(17,26)(18,25)(21,22)(23,32)(24,31)
(27,28)(29,36)(30,35)(33,34)(37,38);
s4 := Sym(38)!( 9,17)(10,13)(11,25)(12,27)(14,29)(15,19)(16,21)(18,23)(20,35)
(22,37)(24,30)(26,31)(28,33)(32,36)(34,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope