Polytope of Type {8,10,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10,6,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 5
Schlafli Type : {8,10,6,2}
Number of vertices, edges, etc : 8, 40, 30, 6, 2
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,10,6,2}*960
   3-fold quotients : {8,10,2,2}*640
   4-fold quotients : {2,10,6,2}*480
   5-fold quotients : {8,2,6,2}*384
   6-fold quotients : {4,10,2,2}*320
   10-fold quotients : {8,2,3,2}*192, {4,2,6,2}*192
   12-fold quotients : {2,10,2,2}*160
   15-fold quotients : {8,2,2,2}*128
   20-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
   24-fold quotients : {2,5,2,2}*80
   30-fold quotients : {4,2,2,2}*64
   40-fold quotients : {2,2,3,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)
( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 61, 91)
( 62, 92)( 63, 93)( 64, 94)( 65, 95)( 66, 96)( 67, 97)( 68, 98)( 69, 99)
( 70,100)( 71,101)( 72,102)( 73,103)( 74,104)( 75,105)( 76,106)( 77,107)
( 78,108)( 79,109)( 80,110)( 81,111)( 82,112)( 83,113)( 84,114)( 85,115)
( 86,116)( 87,117)( 88,118)( 89,119)( 90,120);;
s1 := (  1, 61)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 66)(  7, 70)(  8, 69)
(  9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)( 16, 76)
( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)( 24, 83)
( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,106)( 32,110)
( 33,109)( 34,108)( 35,107)( 36,111)( 37,115)( 38,114)( 39,113)( 40,112)
( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 91)( 47, 95)( 48, 94)
( 49, 93)( 50, 92)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)( 56,101)
( 57,105)( 58,104)( 59,103)( 60,102);;
s2 := (  1,  2)(  3,  5)(  6, 12)(  7, 11)(  8, 15)(  9, 14)( 10, 13)( 16, 17)
( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 32)( 33, 35)
( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)( 46, 47)( 48, 50)( 51, 57)
( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 62)( 63, 65)( 66, 72)( 67, 71)
( 68, 75)( 69, 74)( 70, 73)( 76, 77)( 78, 80)( 81, 87)( 82, 86)( 83, 90)
( 84, 89)( 85, 88)( 91, 92)( 93, 95)( 96,102)( 97,101)( 98,105)( 99,104)
(100,103)(106,107)(108,110)(111,117)(112,116)(113,120)(114,119)(115,118);;
s3 := (  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)( 64, 69)
( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)( 92, 97)
( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)(110,115);;
s4 := (121,122);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)
( 38, 53)( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)
( 61, 91)( 62, 92)( 63, 93)( 64, 94)( 65, 95)( 66, 96)( 67, 97)( 68, 98)
( 69, 99)( 70,100)( 71,101)( 72,102)( 73,103)( 74,104)( 75,105)( 76,106)
( 77,107)( 78,108)( 79,109)( 80,110)( 81,111)( 82,112)( 83,113)( 84,114)
( 85,115)( 86,116)( 87,117)( 88,118)( 89,119)( 90,120);
s1 := Sym(122)!(  1, 61)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 66)(  7, 70)
(  8, 69)(  9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)
( 16, 76)( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)
( 24, 83)( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,106)
( 32,110)( 33,109)( 34,108)( 35,107)( 36,111)( 37,115)( 38,114)( 39,113)
( 40,112)( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 91)( 47, 95)
( 48, 94)( 49, 93)( 50, 92)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)
( 56,101)( 57,105)( 58,104)( 59,103)( 60,102);
s2 := Sym(122)!(  1,  2)(  3,  5)(  6, 12)(  7, 11)(  8, 15)(  9, 14)( 10, 13)
( 16, 17)( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 32)
( 33, 35)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)( 46, 47)( 48, 50)
( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 62)( 63, 65)( 66, 72)
( 67, 71)( 68, 75)( 69, 74)( 70, 73)( 76, 77)( 78, 80)( 81, 87)( 82, 86)
( 83, 90)( 84, 89)( 85, 88)( 91, 92)( 93, 95)( 96,102)( 97,101)( 98,105)
( 99,104)(100,103)(106,107)(108,110)(111,117)(112,116)(113,120)(114,119)
(115,118);
s3 := Sym(122)!(  1,  6)(  2,  7)(  3,  8)(  4,  9)(  5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)
( 64, 69)( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)
(110,115);
s4 := Sym(122)!(121,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope