include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,10,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10,6}*960
Also Known As : {{8,10|2},{10,6|2}}. if this polytope has another name.
Group : SmallGroup(960,8239)
Rank : 4
Schlafli Type : {8,10,6}
Number of vertices, edges, etc : 8, 40, 30, 6
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{8,10,6,2} of size 1920
Vertex Figure Of :
{2,8,10,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,10,6}*480
3-fold quotients : {8,10,2}*320
4-fold quotients : {2,10,6}*240
5-fold quotients : {8,2,6}*192
6-fold quotients : {4,10,2}*160
10-fold quotients : {8,2,3}*96, {4,2,6}*96
12-fold quotients : {2,10,2}*80
15-fold quotients : {8,2,2}*64
20-fold quotients : {4,2,3}*48, {2,2,6}*48
24-fold quotients : {2,5,2}*40
30-fold quotients : {4,2,2}*32
40-fold quotients : {2,2,3}*24
60-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,20,6}*1920a, {8,10,12}*1920, {16,10,6}*1920
Permutation Representation (GAP) :
s0 := ( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)
( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 61, 91)
( 62, 92)( 63, 93)( 64, 94)( 65, 95)( 66, 96)( 67, 97)( 68, 98)( 69, 99)
( 70,100)( 71,101)( 72,102)( 73,103)( 74,104)( 75,105)( 76,106)( 77,107)
( 78,108)( 79,109)( 80,110)( 81,111)( 82,112)( 83,113)( 84,114)( 85,115)
( 86,116)( 87,117)( 88,118)( 89,119)( 90,120);;
s1 := ( 1, 61)( 2, 65)( 3, 64)( 4, 63)( 5, 62)( 6, 66)( 7, 70)( 8, 69)
( 9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)( 16, 76)
( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)( 24, 83)
( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,106)( 32,110)
( 33,109)( 34,108)( 35,107)( 36,111)( 37,115)( 38,114)( 39,113)( 40,112)
( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 91)( 47, 95)( 48, 94)
( 49, 93)( 50, 92)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)( 56,101)
( 57,105)( 58,104)( 59,103)( 60,102);;
s2 := ( 1, 2)( 3, 5)( 6, 12)( 7, 11)( 8, 15)( 9, 14)( 10, 13)( 16, 17)
( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 32)( 33, 35)
( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)( 46, 47)( 48, 50)( 51, 57)
( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 62)( 63, 65)( 66, 72)( 67, 71)
( 68, 75)( 69, 74)( 70, 73)( 76, 77)( 78, 80)( 81, 87)( 82, 86)( 83, 90)
( 84, 89)( 85, 88)( 91, 92)( 93, 95)( 96,102)( 97,101)( 98,105)( 99,104)
(100,103)(106,107)(108,110)(111,117)(112,116)(113,120)(114,119)(115,118);;
s3 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)( 64, 69)
( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)( 92, 97)
( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)(110,115);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(120)!( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)
( 38, 53)( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)
( 61, 91)( 62, 92)( 63, 93)( 64, 94)( 65, 95)( 66, 96)( 67, 97)( 68, 98)
( 69, 99)( 70,100)( 71,101)( 72,102)( 73,103)( 74,104)( 75,105)( 76,106)
( 77,107)( 78,108)( 79,109)( 80,110)( 81,111)( 82,112)( 83,113)( 84,114)
( 85,115)( 86,116)( 87,117)( 88,118)( 89,119)( 90,120);
s1 := Sym(120)!( 1, 61)( 2, 65)( 3, 64)( 4, 63)( 5, 62)( 6, 66)( 7, 70)
( 8, 69)( 9, 68)( 10, 67)( 11, 71)( 12, 75)( 13, 74)( 14, 73)( 15, 72)
( 16, 76)( 17, 80)( 18, 79)( 19, 78)( 20, 77)( 21, 81)( 22, 85)( 23, 84)
( 24, 83)( 25, 82)( 26, 86)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31,106)
( 32,110)( 33,109)( 34,108)( 35,107)( 36,111)( 37,115)( 38,114)( 39,113)
( 40,112)( 41,116)( 42,120)( 43,119)( 44,118)( 45,117)( 46, 91)( 47, 95)
( 48, 94)( 49, 93)( 50, 92)( 51, 96)( 52,100)( 53, 99)( 54, 98)( 55, 97)
( 56,101)( 57,105)( 58,104)( 59,103)( 60,102);
s2 := Sym(120)!( 1, 2)( 3, 5)( 6, 12)( 7, 11)( 8, 15)( 9, 14)( 10, 13)
( 16, 17)( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 32)
( 33, 35)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)( 46, 47)( 48, 50)
( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 62)( 63, 65)( 66, 72)
( 67, 71)( 68, 75)( 69, 74)( 70, 73)( 76, 77)( 78, 80)( 81, 87)( 82, 86)
( 83, 90)( 84, 89)( 85, 88)( 91, 92)( 93, 95)( 96,102)( 97,101)( 98,105)
( 99,104)(100,103)(106,107)(108,110)(111,117)(112,116)(113,120)(114,119)
(115,118);
s3 := Sym(120)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)
( 64, 69)( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)
(110,115);
poly := sub<Sym(120)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope