include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {40,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {40,6,2,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,235349)
Rank : 5
Schlafli Type : {40,6,2,2}
Number of vertices, edges, etc : 40, 120, 6, 2, 2
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {20,6,2,2}*960a
3-fold quotients : {40,2,2,2}*640
4-fold quotients : {10,6,2,2}*480
5-fold quotients : {8,6,2,2}*384
6-fold quotients : {20,2,2,2}*320
10-fold quotients : {4,6,2,2}*192a
12-fold quotients : {10,2,2,2}*160
15-fold quotients : {8,2,2,2}*128
20-fold quotients : {2,6,2,2}*96
24-fold quotients : {5,2,2,2}*80
30-fold quotients : {4,2,2,2}*64
40-fold quotients : {2,3,2,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 31, 46)( 32, 50)( 33, 49)( 34, 48)
( 35, 47)( 36, 51)( 37, 55)( 38, 54)( 39, 53)( 40, 52)( 41, 56)( 42, 60)
( 43, 59)( 44, 58)( 45, 57)( 61, 91)( 62, 95)( 63, 94)( 64, 93)( 65, 92)
( 66, 96)( 67,100)( 68, 99)( 69, 98)( 70, 97)( 71,101)( 72,105)( 73,104)
( 74,103)( 75,102)( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)( 81,111)
( 82,115)( 83,114)( 84,113)( 85,112)( 86,116)( 87,120)( 88,119)( 89,118)
( 90,117);;
s1 := ( 1, 62)( 2, 61)( 3, 65)( 4, 64)( 5, 63)( 6, 72)( 7, 71)( 8, 75)
( 9, 74)( 10, 73)( 11, 67)( 12, 66)( 13, 70)( 14, 69)( 15, 68)( 16, 77)
( 17, 76)( 18, 80)( 19, 79)( 20, 78)( 21, 87)( 22, 86)( 23, 90)( 24, 89)
( 25, 88)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31,107)( 32,106)
( 33,110)( 34,109)( 35,108)( 36,117)( 37,116)( 38,120)( 39,119)( 40,118)
( 41,112)( 42,111)( 43,115)( 44,114)( 45,113)( 46, 92)( 47, 91)( 48, 95)
( 49, 94)( 50, 93)( 51,102)( 52,101)( 53,105)( 54,104)( 55,103)( 56, 97)
( 57, 96)( 58,100)( 59, 99)( 60, 98);;
s2 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)( 18, 23)
( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)( 46, 51)
( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)( 64, 69)
( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)( 92, 97)
( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)(110,115);;
s3 := (121,122);;
s4 := (123,124);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(124)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 31, 46)( 32, 50)( 33, 49)
( 34, 48)( 35, 47)( 36, 51)( 37, 55)( 38, 54)( 39, 53)( 40, 52)( 41, 56)
( 42, 60)( 43, 59)( 44, 58)( 45, 57)( 61, 91)( 62, 95)( 63, 94)( 64, 93)
( 65, 92)( 66, 96)( 67,100)( 68, 99)( 69, 98)( 70, 97)( 71,101)( 72,105)
( 73,104)( 74,103)( 75,102)( 76,106)( 77,110)( 78,109)( 79,108)( 80,107)
( 81,111)( 82,115)( 83,114)( 84,113)( 85,112)( 86,116)( 87,120)( 88,119)
( 89,118)( 90,117);
s1 := Sym(124)!( 1, 62)( 2, 61)( 3, 65)( 4, 64)( 5, 63)( 6, 72)( 7, 71)
( 8, 75)( 9, 74)( 10, 73)( 11, 67)( 12, 66)( 13, 70)( 14, 69)( 15, 68)
( 16, 77)( 17, 76)( 18, 80)( 19, 79)( 20, 78)( 21, 87)( 22, 86)( 23, 90)
( 24, 89)( 25, 88)( 26, 82)( 27, 81)( 28, 85)( 29, 84)( 30, 83)( 31,107)
( 32,106)( 33,110)( 34,109)( 35,108)( 36,117)( 37,116)( 38,120)( 39,119)
( 40,118)( 41,112)( 42,111)( 43,115)( 44,114)( 45,113)( 46, 92)( 47, 91)
( 48, 95)( 49, 94)( 50, 93)( 51,102)( 52,101)( 53,105)( 54,104)( 55,103)
( 56, 97)( 57, 96)( 58,100)( 59, 99)( 60, 98);
s2 := Sym(124)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5, 10)( 16, 21)( 17, 22)
( 18, 23)( 19, 24)( 20, 25)( 31, 36)( 32, 37)( 33, 38)( 34, 39)( 35, 40)
( 46, 51)( 47, 52)( 48, 53)( 49, 54)( 50, 55)( 61, 66)( 62, 67)( 63, 68)
( 64, 69)( 65, 70)( 76, 81)( 77, 82)( 78, 83)( 79, 84)( 80, 85)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100)(106,111)(107,112)(108,113)(109,114)
(110,115);
s3 := Sym(124)!(121,122);
s4 := Sym(124)!(123,124);
poly := sub<Sym(124)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope