include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,30,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,30,2}*1920a
if this polytope has a name.
Group : SmallGroup(1920,236171)
Rank : 6
Schlafli Type : {2,2,4,30,2}
Number of vertices, edges, etc : 2, 2, 4, 60, 30, 2
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,30,2}*960
3-fold quotients : {2,2,4,10,2}*640
4-fold quotients : {2,2,2,15,2}*480
5-fold quotients : {2,2,4,6,2}*384a
6-fold quotients : {2,2,2,10,2}*320
10-fold quotients : {2,2,2,6,2}*192
12-fold quotients : {2,2,2,5,2}*160
15-fold quotients : {2,2,4,2,2}*128
20-fold quotients : {2,2,2,3,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)
(45,60)(46,61)(47,62)(48,63)(49,64);;
s3 := ( 5,35)( 6,39)( 7,38)( 8,37)( 9,36)(10,45)(11,49)(12,48)(13,47)(14,46)
(15,40)(16,44)(17,43)(18,42)(19,41)(20,50)(21,54)(22,53)(23,52)(24,51)(25,60)
(26,64)(27,63)(28,62)(29,61)(30,55)(31,59)(32,58)(33,57)(34,56);;
s4 := ( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,26)(21,25)(22,29)
(23,28)(24,27)(30,31)(32,34)(35,41)(36,40)(37,44)(38,43)(39,42)(45,46)(47,49)
(50,56)(51,55)(52,59)(53,58)(54,57)(60,61)(62,64);;
s5 := (65,66);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(66)!(1,2);
s1 := Sym(66)!(3,4);
s2 := Sym(66)!(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)
(44,59)(45,60)(46,61)(47,62)(48,63)(49,64);
s3 := Sym(66)!( 5,35)( 6,39)( 7,38)( 8,37)( 9,36)(10,45)(11,49)(12,48)(13,47)
(14,46)(15,40)(16,44)(17,43)(18,42)(19,41)(20,50)(21,54)(22,53)(23,52)(24,51)
(25,60)(26,64)(27,63)(28,62)(29,61)(30,55)(31,59)(32,58)(33,57)(34,56);
s4 := Sym(66)!( 5,11)( 6,10)( 7,14)( 8,13)( 9,12)(15,16)(17,19)(20,26)(21,25)
(22,29)(23,28)(24,27)(30,31)(32,34)(35,41)(36,40)(37,44)(38,43)(39,42)(45,46)
(47,49)(50,56)(51,55)(52,59)(53,58)(54,57)(60,61)(62,64);
s5 := Sym(66)!(65,66);
poly := sub<Sym(66)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope