include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,10,2}*640
if this polytope has a name.
Group : SmallGroup(640,21507)
Rank : 6
Schlafli Type : {2,2,4,10,2}
Number of vertices, edges, etc : 2, 2, 4, 20, 10, 2
Order of s0s1s2s3s4s5 : 20
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,4,10,2,2} of size 1280
{2,2,4,10,2,3} of size 1920
Vertex Figure Of :
{2,2,2,4,10,2} of size 1280
{3,2,2,4,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,10,2}*320
4-fold quotients : {2,2,2,5,2}*160
5-fold quotients : {2,2,4,2,2}*128
10-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,4,10,2}*1280, {2,2,4,20,2}*1280, {4,2,4,10,2}*1280, {2,2,4,10,4}*1280, {2,2,8,10,2}*1280
3-fold covers : {2,2,4,30,2}*1920a, {2,2,4,10,6}*1920, {2,6,4,10,2}*1920, {6,2,4,10,2}*1920, {2,2,12,10,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)(10,15)(11,16)(17,21)(18,22);;
s3 := ( 5, 6)( 7,11)( 8,10)( 9,14)(12,18)(13,17)(15,20)(16,19)(21,24)(22,23);;
s4 := ( 5, 7)( 6,10)( 8,12)( 9,15)(11,17)(14,19)(16,21)(20,23);;
s5 := (25,26);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(26)!(1,2);
s1 := Sym(26)!(3,4);
s2 := Sym(26)!( 6, 9)(10,15)(11,16)(17,21)(18,22);
s3 := Sym(26)!( 5, 6)( 7,11)( 8,10)( 9,14)(12,18)(13,17)(15,20)(16,19)(21,24)
(22,23);
s4 := Sym(26)!( 5, 7)( 6,10)( 8,12)( 9,15)(11,17)(14,19)(16,21)(20,23);
s5 := Sym(26)!(25,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope