include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,10,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,10,4,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 6
Schlafli Type : {6,2,10,4,2}
Number of vertices, edges, etc : 6, 6, 10, 20, 4, 2
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,10,4,2}*960, {6,2,10,2,2}*960
3-fold quotients : {2,2,10,4,2}*640
4-fold quotients : {3,2,10,2,2}*480, {6,2,5,2,2}*480
5-fold quotients : {6,2,2,4,2}*384
6-fold quotients : {2,2,10,2,2}*320
8-fold quotients : {3,2,5,2,2}*240
10-fold quotients : {3,2,2,4,2}*192, {6,2,2,2,2}*192
12-fold quotients : {2,2,5,2,2}*160
15-fold quotients : {2,2,2,4,2}*128
20-fold quotients : {3,2,2,2,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 9,10)(12,13)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26);;
s3 := ( 7, 9)( 8,17)(10,14)(11,12)(13,23)(16,21)(18,19)(20,24)(22,25);;
s4 := ( 7, 8)( 9,12)(10,13)(11,16)(14,19)(15,20)(17,21)(18,22)(23,25)(24,26);;
s5 := (27,28);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(28)!(3,4)(5,6);
s1 := Sym(28)!(1,5)(2,3)(4,6);
s2 := Sym(28)!( 9,10)(12,13)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26);
s3 := Sym(28)!( 7, 9)( 8,17)(10,14)(11,12)(13,23)(16,21)(18,19)(20,24)(22,25);
s4 := Sym(28)!( 7, 8)( 9,12)(10,13)(11,16)(14,19)(15,20)(17,21)(18,22)(23,25)
(24,26);
s5 := Sym(28)!(27,28);
poly := sub<Sym(28)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope