include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,10,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,10,6,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 6
Schlafli Type : {2,2,10,6,4}
Number of vertices, edges, etc : 2, 2, 10, 30, 12, 4
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,10,6,2}*960
3-fold quotients : {2,2,10,2,4}*640
5-fold quotients : {2,2,2,6,4}*384a
6-fold quotients : {2,2,5,2,4}*320, {2,2,10,2,2}*320
10-fold quotients : {2,2,2,6,2}*192
12-fold quotients : {2,2,5,2,2}*160
15-fold quotients : {2,2,2,2,4}*128
20-fold quotients : {2,2,2,3,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)( 7, 8)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)(27,28)
(31,34)(32,33)(36,39)(37,38)(41,44)(42,43)(46,49)(47,48)(51,54)(52,53)(56,59)
(57,58)(61,64)(62,63);;
s3 := ( 5, 6)( 7, 9)(10,16)(11,15)(12,19)(13,18)(14,17)(20,21)(22,24)(25,31)
(26,30)(27,34)(28,33)(29,32)(35,36)(37,39)(40,46)(41,45)(42,49)(43,48)(44,47)
(50,51)(52,54)(55,61)(56,60)(57,64)(58,63)(59,62);;
s4 := ( 5,10)( 6,11)( 7,12)( 8,13)( 9,14)(20,25)(21,26)(22,27)(23,28)(24,29)
(35,55)(36,56)(37,57)(38,58)(39,59)(40,50)(41,51)(42,52)(43,53)(44,54)(45,60)
(46,61)(47,62)(48,63)(49,64);;
s5 := ( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)(11,41)(12,42)(13,43)(14,44)
(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)
(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!(1,2);
s1 := Sym(64)!(3,4);
s2 := Sym(64)!( 6, 9)( 7, 8)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)
(27,28)(31,34)(32,33)(36,39)(37,38)(41,44)(42,43)(46,49)(47,48)(51,54)(52,53)
(56,59)(57,58)(61,64)(62,63);
s3 := Sym(64)!( 5, 6)( 7, 9)(10,16)(11,15)(12,19)(13,18)(14,17)(20,21)(22,24)
(25,31)(26,30)(27,34)(28,33)(29,32)(35,36)(37,39)(40,46)(41,45)(42,49)(43,48)
(44,47)(50,51)(52,54)(55,61)(56,60)(57,64)(58,63)(59,62);
s4 := Sym(64)!( 5,10)( 6,11)( 7,12)( 8,13)( 9,14)(20,25)(21,26)(22,27)(23,28)
(24,29)(35,55)(36,56)(37,57)(38,58)(39,59)(40,50)(41,51)(42,52)(43,53)(44,54)
(45,60)(46,61)(47,62)(48,63)(49,64);
s5 := Sym(64)!( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)(11,41)(12,42)(13,43)
(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)
(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope