include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,6,4}*960a
if this polytope has a name.
Group : SmallGroup(960,11219)
Rank : 5
Schlafli Type : {2,10,6,4}
Number of vertices, edges, etc : 2, 10, 30, 12, 4
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,10,6,4,2} of size 1920
Vertex Figure Of :
{2,2,10,6,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,6,2}*480
3-fold quotients : {2,10,2,4}*320
5-fold quotients : {2,2,6,4}*192a
6-fold quotients : {2,5,2,4}*160, {2,10,2,2}*160
10-fold quotients : {2,2,6,2}*96
12-fold quotients : {2,5,2,2}*80
15-fold quotients : {2,2,2,4}*64
20-fold quotients : {2,2,3,2}*48
30-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,10,12,4}*1920a, {4,10,6,4}*1920a, {2,20,6,4}*1920a, {2,10,6,8}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)(25,26)
(29,32)(30,31)(34,37)(35,36)(39,42)(40,41)(44,47)(45,46)(49,52)(50,51)(54,57)
(55,56)(59,62)(60,61);;
s2 := ( 3, 4)( 5, 7)( 8,14)( 9,13)(10,17)(11,16)(12,15)(18,19)(20,22)(23,29)
(24,28)(25,32)(26,31)(27,30)(33,34)(35,37)(38,44)(39,43)(40,47)(41,46)(42,45)
(48,49)(50,52)(53,59)(54,58)(55,62)(56,61)(57,60);;
s3 := ( 3, 8)( 4, 9)( 5,10)( 6,11)( 7,12)(18,23)(19,24)(20,25)(21,26)(22,27)
(33,53)(34,54)(35,55)(36,56)(37,57)(38,48)(39,49)(40,50)(41,51)(42,52)(43,58)
(44,59)(45,60)(46,61)(47,62);;
s4 := ( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)(11,41)(12,42)
(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)
(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(62)!(1,2);
s1 := Sym(62)!( 4, 7)( 5, 6)( 9,12)(10,11)(14,17)(15,16)(19,22)(20,21)(24,27)
(25,26)(29,32)(30,31)(34,37)(35,36)(39,42)(40,41)(44,47)(45,46)(49,52)(50,51)
(54,57)(55,56)(59,62)(60,61);
s2 := Sym(62)!( 3, 4)( 5, 7)( 8,14)( 9,13)(10,17)(11,16)(12,15)(18,19)(20,22)
(23,29)(24,28)(25,32)(26,31)(27,30)(33,34)(35,37)(38,44)(39,43)(40,47)(41,46)
(42,45)(48,49)(50,52)(53,59)(54,58)(55,62)(56,61)(57,60);
s3 := Sym(62)!( 3, 8)( 4, 9)( 5,10)( 6,11)( 7,12)(18,23)(19,24)(20,25)(21,26)
(22,27)(33,53)(34,54)(35,55)(36,56)(37,57)(38,48)(39,49)(40,50)(41,51)(42,52)
(43,58)(44,59)(45,60)(46,61)(47,62);
s4 := Sym(62)!( 3,33)( 4,34)( 5,35)( 6,36)( 7,37)( 8,38)( 9,39)(10,40)(11,41)
(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)
(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62);
poly := sub<Sym(62)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope