include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,2,4,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,2,4,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,236178)
Rank : 7
Schlafli Type : {3,2,2,2,4,10}
Number of vertices, edges, etc : 3, 3, 2, 2, 4, 20, 10
Order of s0s1s2s3s4s5s6 : 60
Order of s0s1s2s3s4s5s6s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,2,2,10}*960
4-fold quotients : {3,2,2,2,2,5}*480
5-fold quotients : {3,2,2,2,4,2}*384
10-fold quotients : {3,2,2,2,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := (6,7);;
s4 := ( 9,12)(13,18)(14,19)(20,24)(21,25);;
s5 := ( 8, 9)(10,14)(11,13)(12,17)(15,21)(16,20)(18,23)(19,22)(24,27)(25,26);;
s6 := ( 8,10)( 9,13)(11,15)(12,18)(14,20)(17,22)(19,24)(23,26);;
poly := Group([s0,s1,s2,s3,s4,s5,s6]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;; s6 := F.7;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s6*s6, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s6*s0*s6, s1*s6*s1*s6,
s2*s6*s2*s6, s3*s6*s3*s6, s4*s6*s4*s6,
s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5,
s4*s5*s6*s5*s4*s5*s6*s5, s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(27)!(2,3);
s1 := Sym(27)!(1,2);
s2 := Sym(27)!(4,5);
s3 := Sym(27)!(6,7);
s4 := Sym(27)!( 9,12)(13,18)(14,19)(20,24)(21,25);
s5 := Sym(27)!( 8, 9)(10,14)(11,13)(12,17)(15,21)(16,20)(18,23)(19,22)(24,27)
(25,26);
s6 := Sym(27)!( 8,10)( 9,13)(11,15)(12,18)(14,20)(17,22)(19,24)(23,26);
poly := sub<Sym(27)|s0,s1,s2,s3,s4,s5,s6>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6> := Group< s0,s1,s2,s3,s4,s5,s6 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s6*s6, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6,
s3*s6*s3*s6, s4*s6*s4*s6, s0*s1*s0*s1*s0*s1,
s4*s5*s4*s5*s4*s5*s4*s5, s4*s5*s6*s5*s4*s5*s6*s5,
s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6 >;
to this polytope