Polytope of Type {2,2,2,4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,4,10}*640
if this polytope has a name.
Group : SmallGroup(640,21507)
Rank : 6
Schlafli Type : {2,2,2,4,10}
Number of vertices, edges, etc : 2, 2, 2, 4, 20, 10
Order of s0s1s2s3s4s5 : 20
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,4,10,2} of size 1280
Vertex Figure Of :
   {2,2,2,2,4,10} of size 1280
   {3,2,2,2,4,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,2,10}*320
   4-fold quotients : {2,2,2,2,5}*160
   5-fold quotients : {2,2,2,4,2}*128
   10-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,2,4,4,10}*1280, {2,2,2,4,20}*1280, {2,4,2,4,10}*1280, {4,2,2,4,10}*1280, {2,2,2,8,10}*1280
   3-fold covers : {2,2,2,4,30}*1920a, {2,2,6,4,10}*1920, {2,6,2,4,10}*1920, {6,2,2,4,10}*1920, {2,2,2,12,10}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8,11)(12,17)(13,18)(19,23)(20,24);;
s4 := ( 7, 8)( 9,13)(10,12)(11,16)(14,20)(15,19)(17,22)(18,21)(23,26)(24,25);;
s5 := ( 7, 9)( 8,12)(10,14)(11,17)(13,19)(16,21)(18,23)(22,25);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!(1,2);
s1 := Sym(26)!(3,4);
s2 := Sym(26)!(5,6);
s3 := Sym(26)!( 8,11)(12,17)(13,18)(19,23)(20,24);
s4 := Sym(26)!( 7, 8)( 9,13)(10,12)(11,16)(14,20)(15,19)(17,22)(18,21)(23,26)
(24,25);
s5 := Sym(26)!( 7, 9)( 8,12)(10,14)(11,17)(13,19)(16,21)(18,23)(22,25);
poly := sub<Sym(26)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope