include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,12,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,12,10,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,236182)
Rank : 6
Schlafli Type : {2,2,12,10,2}
Number of vertices, edges, etc : 2, 2, 12, 60, 10, 2
Order of s0s1s2s3s4s5 : 60
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,6,10,2}*960
3-fold quotients : {2,2,4,10,2}*640
5-fold quotients : {2,2,12,2,2}*384
6-fold quotients : {2,2,2,10,2}*320
10-fold quotients : {2,2,6,2,2}*192
12-fold quotients : {2,2,2,5,2}*160
15-fold quotients : {2,2,4,2,2}*128
20-fold quotients : {2,2,3,2,2}*96
30-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (10,15)(11,16)(12,17)(13,18)(14,19)(25,30)(26,31)(27,32)(28,33)(29,34)
(35,50)(36,51)(37,52)(38,53)(39,54)(40,60)(41,61)(42,62)(43,63)(44,64)(45,55)
(46,56)(47,57)(48,58)(49,59);;
s3 := ( 5,40)( 6,44)( 7,43)( 8,42)( 9,41)(10,35)(11,39)(12,38)(13,37)(14,36)
(15,45)(16,49)(17,48)(18,47)(19,46)(20,55)(21,59)(22,58)(23,57)(24,56)(25,50)
(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61);;
s4 := ( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)(27,29)
(30,31)(32,34)(35,36)(37,39)(40,41)(42,44)(45,46)(47,49)(50,51)(52,54)(55,56)
(57,59)(60,61)(62,64);;
s5 := (65,66);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(66)!(1,2);
s1 := Sym(66)!(3,4);
s2 := Sym(66)!(10,15)(11,16)(12,17)(13,18)(14,19)(25,30)(26,31)(27,32)(28,33)
(29,34)(35,50)(36,51)(37,52)(38,53)(39,54)(40,60)(41,61)(42,62)(43,63)(44,64)
(45,55)(46,56)(47,57)(48,58)(49,59);
s3 := Sym(66)!( 5,40)( 6,44)( 7,43)( 8,42)( 9,41)(10,35)(11,39)(12,38)(13,37)
(14,36)(15,45)(16,49)(17,48)(18,47)(19,46)(20,55)(21,59)(22,58)(23,57)(24,56)
(25,50)(26,54)(27,53)(28,52)(29,51)(30,60)(31,64)(32,63)(33,62)(34,61);
s4 := Sym(66)!( 5, 6)( 7, 9)(10,11)(12,14)(15,16)(17,19)(20,21)(22,24)(25,26)
(27,29)(30,31)(32,34)(35,36)(37,39)(40,41)(42,44)(45,46)(47,49)(50,51)(52,54)
(55,56)(57,59)(60,61)(62,64);
s5 := Sym(66)!(65,66);
poly := sub<Sym(66)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope