Polytope of Type {3,3,4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,3,4,10}*1920
Also Known As : {{3,3,4}4,{{3,4},{4,10|2}}}. if this polytope has another name.
Group : SmallGroup(1920,238598)
Rank : 5
Schlafli Type : {3,3,4,10}
Number of vertices, edges, etc : 4, 12, 16, 40, 10
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {3,3,2,10}*480
   5-fold quotients : {3,3,4,2}*384
   8-fold quotients : {3,3,2,5}*240
   20-fold quotients : {3,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)
(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47)(51,52)(55,56)(57,61)
(58,62)(59,64)(60,63)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79);;
s1 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)(23,31)
(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44)(50,52)(53,61)(54,64)
(55,63)(56,62)(58,60)(66,68)(69,77)(70,80)(71,79)(72,78)(74,76);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,21)(18,22)(19,24)(20,23)
(27,28)(31,32)(33,37)(34,38)(35,40)(36,39)(43,44)(47,48)(49,53)(50,54)(51,56)
(52,55)(59,60)(63,64)(65,69)(66,70)(67,72)(68,71)(75,76)(79,80);;
s3 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,65)(18,66)(19,67)(20,68)
(21,70)(22,69)(23,72)(24,71)(25,75)(26,76)(27,73)(28,74)(29,80)(30,79)(31,78)
(32,77)(33,49)(34,50)(35,51)(36,52)(37,54)(38,53)(39,56)(40,55)(41,59)(42,60)
(43,57)(44,58)(45,64)(46,63)(47,62)(48,61);;
s4 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22)( 7,23)( 8,24)( 9,25)(10,26)
(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,65)(34,66)(35,67)(36,68)(37,69)
(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)
(48,80);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s2*s1*s3*s0*s2*s3*s2*s1*s0*s2*s3*s2*s1*s0*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(80)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)
(26,30)(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47)(51,52)(55,56)
(57,61)(58,62)(59,64)(60,63)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79);
s1 := Sym(80)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)
(23,31)(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44)(50,52)(53,61)
(54,64)(55,63)(56,62)(58,60)(66,68)(69,77)(70,80)(71,79)(72,78)(74,76);
s2 := Sym(80)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,21)(18,22)(19,24)
(20,23)(27,28)(31,32)(33,37)(34,38)(35,40)(36,39)(43,44)(47,48)(49,53)(50,54)
(51,56)(52,55)(59,60)(63,64)(65,69)(66,70)(67,72)(68,71)(75,76)(79,80);
s3 := Sym(80)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,65)(18,66)(19,67)
(20,68)(21,70)(22,69)(23,72)(24,71)(25,75)(26,76)(27,73)(28,74)(29,80)(30,79)
(31,78)(32,77)(33,49)(34,50)(35,51)(36,52)(37,54)(38,53)(39,56)(40,55)(41,59)
(42,60)(43,57)(44,58)(45,64)(46,63)(47,62)(48,61);
s4 := Sym(80)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22)( 7,23)( 8,24)( 9,25)
(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,65)(34,66)(35,67)(36,68)
(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)
(48,80);
poly := sub<Sym(80)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s2*s1*s3*s0*s2*s3*s2*s1*s0*s2*s3*s2*s1*s0*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 
References : None.
to this polytope